
QUEST/Ada

QUERY UTILITY ENVIRONMENT FOR SOFTWARE TESTING OF ADA

The Development of a
Program Analysis Environment

for Ada

Contract Number NASA-NCC8-14

First Six-Month Report

Department of Computer Science and Engineering
Auburn University, Alabama 36849-5347

Contact: David B. Brown, Ph.D., P.E.
Professor and Interim Head

dbrown@AUDUCVAX.bitnet
(205) 826-4330

November 30, 1988

TABLE OF CONTENTS

Acknowledgements

Executive Summary

1 . Introduction . 1

2 . Literature Review . 2
2.1 Introduction 2
2.2 Software Testing 4

2.2.1 Functional Testing 5
2.2.2 Structural Testing 6

Structural Testing 8
2.2.4 Other Test Strategies 9

2.2.4.1 Mutation Testing 9
2.2.4.2 Domain Testing 11
2.2.4.3 Symbolic Evaluation 11

2.3 Automation . 13
2.3.1 The Need For An Oracle 13
2.3.2 Automated Testing Tools 14

2.3.2.1 Structural Testing Tools 14
2.3.2.2 Functional Testing Tools 15

2.4 Reliability Models and Test Adequacy Criteria . . . 15
2.5 Test Data Generation 17
2.6 The Path/Predicate Solution Problem 19
2.7 Conclusion . 20

2.2.3 Need For Both Functional and

3 . Definition of System Structure 21
4 . Definition of High-Level Interfaces 25

4.1 Parser/Scanner Interfaces 25
4.2 Test Data Generator Interfaces 27
4.3 Test Execution Module Interfaces 28
4.4 Test Coverage Analysis Interfaces 30
4.5 Report Generator Interfaces 30

5 . Definition of Ada Subset 33
6 . Preliminary Analysis of Parser/Scanner Requirements . . 34

6.1 General Parser/Scanner Requirements 34
6.2 Example Module Instrumentation 36

7 . Preliminary Design of Test Data Generator 39
7.1 Cases of Arithmet . .- "wpressions 41
7.2 Heuristics for Finding the Condition Boundaries . . 41
7.3 Structural Methods 45
7.4 System Interface Mechanism 48

8 . Preliminary Design of the User Interface 50
8.1 System Definition Menu 51
8.2 Module Selection Menu 52
8.3 Automatic Testing Menu 54
8.4 QUEST Regression Test Menu 56
8.5 QUEST Variable Definition Menu 58
8 . 6 Testing Result Reports Menu 59
8.7 QUEST Utilities Menu 59
8.8 Detailed Plan fo r Project 60

9 . Detailed Plan for Third Quarter 61
10 . References . 65

APPENDIX A . QUEST/Ada IORL System Specifications
APPENDIX B . Paper: A Rule-Based Software Test Data Generator

ACKNOWLEDGEMENTS

Portions of this report were contributed by each of the

members of the project team. The following is an alphabetized

listing of project team members.

FACULTY INVESTIGATORS

Dr. David B. Brown, Principal Investigator
Dr. Homer W. Carlisle
Dr. Kai-Hsiung Chang
Dr. James H. Cross

GRADUATE RESEARCH ASSISTANTS

William H. Deason
Kevin D. Haga
John R. Huggins
William R. A. Keleher
Orville R. Weyrich
Michael P. Woods

UNDERGRADUATE TECHNICAL ASSISTANTS

Todd E. Blevins
Edward Swan

Ada is a trademark of the United States Government, Ada
Joint Program Office.

EXECUTIVE SUMMARY

The Development of a Program Analysis Environment for Ada

After several preliminary meetings with the sponsor, the

scope of this project was defined to include the design and

development of a prototype system for testing Ada software

modules at the unit level. This would be patterned after a

previous prototype for FORTRAN developed at Auburn University.

The new system was called Query Utility Environment for Software

Testing of Ada (QUEST/Ada).

QUEST/Ada differs significantly from it predecessor in the

following regard: (1) the parser/scanner mechanism will be

obtained from a formal parser/scanner generator such as YACC,

LALR 3.0, or BISON, (2) the test data generator will be rule-

based as opposed to traditional techniques of path generation and

predicate solution, and (3) a large number of test cases are

assumed to be supportable. This third difference assumes the

presence of redundant code generated either automatically from

the specification (sometimes called simulation) or by manual

coding. With automatic comparison capabilities there is no

longer a need for selecting only a relatively few test cases for

verification. QUEST/Ada is being designed under the premise that

a large number of test cases will be generated from the rule

base. A subset of these, which provide the necessary path and

domain coverage characteristics, may be selected for verifica-

tion.

The literature review can be summarized by a quotation from

Fisher which stated that currently "there are no CASE tools to

assist in the unit test and integration phase" [FIS88]. However,

the literature abounds with papers on the theory of software

testing, and much work is continuing in this area. The litera-

ture review was organized according to: (1) software testing

approaches and strategies, (2) automation of the various aspects

of software testing, (3) reliability models and test adequacy

criteria, (4) test data generation approaches, and (5) a

discussion of rule-based versus traditional test data generation

approaches.

The design of QUEST/Ada began with a definition of the

overall system structure. This was performed in IORL, which

tended to clarify component dependencies for the project team.

This led to a more formal description of these dependencies,

which was obtained by the definition of the high level interfaces

between the components. The project team was then subdivided

into three groups to resolve the preliminary design of the major

three components of QUEST/Ada, namely: (1) the parser/scanner,

(2) the test data generator, and (3) the user interface.

The six-month report is organized as a working document

from which the system documentation will evolve. The introducto-

ry section provides some history and a guide to the sections of

the report. A fairly comprehensive literature review follows

which is targeted toward issues of Ada testing. The definition

of the system structure and the high level interfaces are then

presented. This is followed by a major chapter on the design of

each of the three major components. Finally, the plan for the

remainder of the project is given. The appendices include the

QUEST/Ada IORL System Specifications to this point in time. A

paper is also included in the appendix which gives statistical

evidence of the validity of the test case generation approach

which is being integrated into QUEST/Ada.

I 1. Introduction

This project was initiated on June 1, 1988. Because funding

of the original proposal was reduced, the Principal Investigator

and the NASA representatives spent the major portion of the first

month defining the scope of the project. A meeting was held on

July 1, 1988 at Auburn to present and verify this redefinition.

Generally the project was subdivided with a minor pilot effort

being devoted toward an analysis of metrics for the evaluation of

existing software packages. Dr. Cherri Pancake and a graduate

student were assigned to this component of the project, and the

results of their efforts are presented in a separate report.

The meeting on July 1, 1988 resolved that the major emphasis

of the project would be in the direction of the design and

prototyping of an environment to facilitate the testing of Ada

code. This would be modeled after an available prototype

environment for FORTRAN code testing, called QUEST. However,

several new approaches were required in order to enable Ada code

to be tested. Among these were: (1) the use of a formal grammar

to generate the parser to be used in the prototype, (2) the use

of rule-based techniques for generating test cases, and (3) the

ultimate development of testing approaches to handle concurrency.

The first two of these are being considered in the current

project .
A second meeting was held on October 6, 1988 in Huntsville

in which the progress over the first three months of the project

was reported. This included results of: (1) the literature

1

review (2) a definition of overall system structure, (3) a

definition of high level interfaces, (4) a definition of the Ada

subset to be processed by the prototype, (5) a preliminary

analysis of scanner/parser requirements, and (6) a detailed plan

for the second quarter.

This report continues by presenting the results of the

literature review which clearly reveals a gap in the area of

automatic test data generation for Ada unit-level testing. This

is followed by the definition of the QUEST/Ada system structure,

which shows a high-level view of the components of the system. A

definition of the high level interfaces is then presented, which

tends to further crystallize the component design. In Section 5

the Ada subset to be addressed by the prototype is defined. This

is followed by the definition of parser/scanner requirements,

which contains an example module instrumented by an early proto-

type. Section 7 presents an early view of the rule-based test

data generator, after which the plan for the remainder of the

project is given. Finally, the high level IORL description of

QUEST/Ada is given in the Appendix.

2 . Literature Review
2.1 Introduction

With the increased production of complex software systems

for embedded systems applications, it becomes apparent that

without some form of organized and efficient approach to the

2

design, development and testing phases of the software lifecycle,

software reliability for these systems will fall short of the

goals set by their developers. A variety of approaches to soft-

ware testing exist [ADR82, G0075, HOW80, HOW76, HOW82a, WHI801.

However, these methodologies generally require considerable

manual effort, i.e., the tester must hand compute paths,

predicates, test cases, etc. Manual implementation of these

methodologies is not only inefficient in terms of resources

expended (man-hours), but it is also subject to inconsistencies

brought about by human errors. Manual methods can generate only

a limited number of test cases before the amount of time expended

becomes unacceptably large. All of these problems may be reduced

by the use of automated software test tools. However, automated

test data generation itself is not well understood [MIL 84, PAN

781.

Ramamoorthy defines automated test tools I f . . as programs

that check the presence of certain software attributes which can

be program syntax correctness, proper program control structures,

proper module interface, testing completeness, etc." [RAM75].

This is the goal of the QUEST/Ada testing tool: to reduce the

resources that must be expended by automating portions of the

testing phase previously requiring manual intervention. Current-

ly "there are no CASE tools to assist in the unit test and

integration phase" [FIS88].

3

2.2 Software Testing

Software testing as a software engineering discipline is

coming of age in the 80's. As E. F. Miller pointed out [MIL84],

"there is growing agreement on the role of testing as a software

quality assurance discipline, as well as on the terminology,

technology, and phenomenology of, and expectation about testing."

He also noted that the first formal conference on software

testing took place at the University of North Carolina in June of

1972. Since that time, testing research has continued on several

fronts, including the automation of portions of the testing

process.

In the testing stage of the software life cycle, the main

thrust of research has been aimed at developing more formal

methods of software and system testing [BEI83]. By definition,

"testing.. .is the process of executing a program (or a part of a

program) with the intention or goal of finding errorst1 [SH083].

A test case is a formally produced collection of prepared inputs,

predicted outputs, and observed results of one execution of a

program [BEI83]. In standard IEEE terminology, a software fault

is an incorrect program component; an error is an incorrect

output resulting from a fault. In order to detect occurrences of

errors indicating faults, some external source of information

about the program under test must be present.

Program testing methods can be classified as dynamic and

static analysis techniques [RAM75]. Dynamic analysis of a

program involves executing the program with test cases and

4

analyzing the output for correctness, while static analysis

includes such techniques as program graph analysis and symbolic

evaluation [ADR82].

A dynamic test strategy is a method of choosing test data

from the functional domain of a program. It is based on criteria

that may reflect the functional description of a program, the

program's internal structure, or a combination of both [ADR82].

These criteria specify the method of test case generation to be

used for a dynamic test strategy. The two dynamic test

strategies generally recognized are functional testing and

structural testing. These will be detailed in the next

subsections.

2.2.1 Functional Testing

Functional testing involves identifying and then testing all

functions of a program (from the lowest to highest levels) with

varying combinations of input values to check for correctness of

output [BEI84, HOW861. Correctness of output is determined by

comparing the actual output to the expected output computed from

the functional specifications of the program. The internal

structure of the program is not analyzed, thus functional testing

is often called "black boxtt testing.

The specifications are used to define the domain of each

variable or its set of possible T' 7,ies. Since the program has

input and output variables, selection of test data must be based

on the input and output domains in such a way that test cases

5

force (or try to force) outputs which lie in all intervals of

each output variable's domain. Howden explains the importance of

testing endpoint conditions as well as any special mathematical

conditions (such as division by zero) that may be encountered in

the software [HOWSO]. In his approach to functional program

testing, Howden also discusses exercising such program elements

as array dimensions and subprogram arguments.

Functional program testing has been used as the basis for

several combinations of test strategies with reportedly good

results [FOSSO, HOW80, HOW86, RED831. These test strategies

consist of the test data selection rules of functional testing as

well as the test coverage measures found in structural testing

techniques.

Random testing is another form of "black boxll testing, since

the internal structure of the program is not considered when

developing test cases. While this method is generally viewed as

the worst type of program testing, it does provide I t . . . very high

segment and branch coverage" [DUR84]. When combined w i t h

extreme and special value testing, it can be an effective method

while providing a direction for the generation of further test

cases [VOU86].

2.2.2 Structural Testing

Structural testing uses the internal control structure m f a

program to guide in the selection of test data [BEI84], and it is

sometimes known as metric-based test data generation. Coverage

6

metrics are concerned with the number of a programls structural

units exercised by test data. Test strategies based on coverage

metrics examine the number of statements, branches, or paths in

the program exercised by test data. This information can be used

to evaluate test results as well as generate test data [ADR82].

Howden and others have discussed path and branch testing

strategies [G0075, HOW76, HOW78a1, while other strategies such as

the use of data flow analysis for obtaining structural

information have been proposed and studied [LAS83]. Symbolic

evaluation, while considered to be either static or dynamic

analysis, is similar to structural testing. This will be

discussed in a later section.

A program's control can easily be represented as a directed

graph [BEI84, RAM66, SH0831 from which program paths may be

identified. It can be shown that for many programs (especially

programs with loops) the number of possible paths is virtually

infinite [BEI84, HOW78a, WOO80], thus leading to the problem of

determining which paths to choose for testing. Criteria f o r

selecting test paths have been discussed [BEI84, HOW78a, RAM76,

SH0831 and include statement, decision, condition, decision-

condition, and multiple condition coverage. llCoveragelt is said

to be achieved if a set of paths executed during program testing

meets a given criteria [BEI84]. The problem of finding a minimal

set of paths to achieve a particular coverage is discussed by So

[VIC84] and by Ntafos [NTA79]. Beizer states that the idea

7

behind path testing is to find a good set of paths providing

coverage, prove that they are correct and then assume that the

remaining untested paths are probably correct [BEI84].

Once a set of paths providing coverage has been selected,

the next step involves generating test data that will cause each

of the selected paths to be executed. Methods for generating

test data from paths are discussed in [ADR82, HOW76, HOW75,

HUA75, RAM761 and others, and center around the idea of solving

path predicates (discussed later) or at least determining path

data constraints to be used for generating test case data.

2.2.3 Need For Both Functional and Structural Testing

The effectiveness of path testing has been questioned

CG0075, NTA841, and studies have shown that the class of errors

found by this type of testing is not sufficient for complete

testing [G0075, HOW761. As discussed in [NTA84], !I... the main

shortcoming of structural testing is that tests are generated

using possible incorrect code, and thus, certain types of errors,

especially errors in the specifications, are hard to detect."

Indeed, Rubey notes that I t . . . there is no single reason for

unreliable softwarell, and then he states that I@. . . no single
validation tool or technique is likely to detect all types of

errorsmt [RUB75]. He also points out that even though a program

fulfills its specifications, it could have specification errors

which would render the program unreliable. Glass draws similar

conclusions when discussing testing methods [GLA81]. Therefore,

8

since no one testing approach is going to solve all testing

problems, functional and structural testing techniques should be

considered complementary methods [HOW80].

2.2.4 Other Test Strategies

2.2.4.1 Mutation Testing

Mutation testing is considered to be a new error-based

testing method [ADR82, VIC841 that is capable of determining the

number and kinds of errors that a test data set is capable of

uncovering [DEM78]. Mutation testing is based upon two

assumptions: 1) the program being tested is nearly correct, and

2) test sets that uncover single errors will also be effective in

uncovering multiple errors [ADR82]. The later assumption is

known as the coupling effect hypothesis and is described by

DeMillo in [DEM78]. He states that It . . .complex errors are
coupled to simple errorsvv and the effect can be observed in real

test/debug situations. Therefore, when testing, attempts should

be made to systematically uncover simple errors that may (or may

not) eventually lead to complex errors.

Mutation testing involves creating a number of program

mutations, with each of the mutations containing different simple

errors. For each set of test data there are only two possible

outcomes after execution: 1) a mutation gives different

wsults than the original program, or 2) the results are the

same. If different results are obtained from the mutation, then

the test data were capable of discovering the seeded error in the

9

mutation. Otherwise, one of the following two conditions is

true: 1) the test data were not adequate for uncovering the

error, or 2) the mutation is equivalent to the original program.

Assuming that the second condition is not true, it would be

necessary to find more sensitive test data to discover the seeded

error. When test data fail to find the seeded error, the

programmer should also examine the code to determine the reason.

If all errors are discovered by the test data and an adequate

number (as defined prior to analysis) and variety of mutations

was used, then it can be assumed that the test data set was

adequate [DEM78].

Howden has proposed a I1weaker1@ mutation testing technique

that is more effective than branch coverage, but less costly and

less effective than mutation testing [HOW82b]. In his technique,

Howden considers five elementary program components to be used in

the mutation process: 1) variable references, 2) variable

assignments, 3) arithmetic expressions, 4) relational

expressions, and 5) Boolean expressions. One of the main

differences and advantages of this technique is that weak

mutation testing does not require a separate program execution

for each mutation, thus reducing testing time. Weak mutation

testing does have the disadvantage of not being able to I ! . . .

guarantee the exposure of all errors in the class of errors

associated with the muration transformations.I1

10

2.2.4.2 Domain Testing

Domain testing is a strategy designed to detect errors in

the control flow of a program (called domain errors), and it is

considered to be fairly new and experimental [VIC84, WHI80,

WHI861. The strategy generates test data to examine the input

space domain of a program, which is defined as a set of input

data satisfying a path condition. In describing the strategy,

White and Cohen state: "the control flow statements in a

computer program partition the input space into a set of mutually

exclusive domains, each of which corresponds to a particular

program path" [WHI80]. The strategy is based on the geometric

analysis of a domain boundary. A boundary represents the range

of input values that will drive the predicate for a given path.

Each boundary consists of border segments, which are determined

by the conditions of a path predicate. By generating test points

on or near the domain borders (since these test points are most

sensitive to domain errors), it is possible to detect whether a

domain error has occurred (TAI80, WHI801. An analysis of input

space subdomains is discussed in [WEY80] as an extension of the

theories of testing proposed by Goodenough and Gerhart in

[G0075]. Domain errors are further defined in the Software

Errors section below.

2.2.4.3 Symbolic Evaluation

Symbolic evaluation is generally considered to be a static

analysis technique for testing software [ADR82, VIC841 and

11

involves building and solving (if possible) path predicates to

generate test data. Unsolvable predicates indicate infeasible

paths in the software which usually raises an error condition

[CLA76]. The test data may be used to actually execute the

software: thus, symbolic evaluation is an effective way of

generating test data for structural testing techniques [G0075].

This idea is the basis for generating test data in the QUEST

automated software testing system and others [BR086a, CLA76,

HOW78bl.

Each decision node along a given path will add a term to the

path predicate. Further, any of the variables within these terms

that are modified by assignment statements must be incorporated

into the path predicate such that it can be stated in terms of

the input variables. Backward substitution has an advantage over

forward substitution in that no space is required for storing the

intermediate symbolic values of variables [RAM76]. The process

of traversing the path and building the path predicate according

to each statement along the path is called "draggingt8 the path

predicate along the path [HUA75]. There is a partial predicate

associated with each control statement along the path called a

branch predicate. As each branch predicate is added to the path

predicate, a new constraint is placed on the values that the

input variables may have [CLA76]. Each new constraint should be

checked fn~- consistency with the path predicate as it is being

built. If an inconsistency is found, the path can be labeled as

infeasible [CLA76]. Forward substitution has the advantage of

12

allowing I t . . .early detection of infeasible paths with

contradicting input constraints1' [RAM76]. Otherwise, the

predicate, which must be satisfied by the input data to drive a

given path, is stated purely in terms of the input variables.

2.3 Automation

There are many facets of the testing process which are ripe

for automation. As expressed above, the purpose of automation is

to enable more and better test cases to be executed in order to

provide more reliable code within the testing resource

constraints. Classical tools include test harness and

instrumentation. More recent literature suggests the need for

automating test case generation, regression testing, and even the

oracle. These are discussed in the following subsections.

2.3.1 The Need For An Oracle

An oracle is defined to be an external source of information

used to detect occurrences of errors. Oracles may be detailed

requirement and design specifications, examples, or simply human

knowledge of how a program should behave. Theoretically, an

oracle is capable of determining whether or not a program has

executed correctly on a given test case [HOW86]. Practically

speaking, the manual effort needed to verify test results makes

this the most labor-intensive part of the testing process

[BR087].

Some type of oracle must be employed, either by test

13

personnel or by an automated testing system, to determine whether

outputs are correct. Two types of oracles that could be

integrated into an automated testing environment are design

specification simulators and redundant coding. A paradigm for

integrating such an automated oracle into the testing process was

given by Brown [BRO87].

2.3.2 Automated Testing Tools

2.3.2.1 Structural Testing Tools

A path predicate states a set of conditions that must be

satisfied in order for a path to be traversed. As each branch is

added to the path predicate, a new constraint is placed on the

values that the input variables may have [CLA76]. Thus the

predicate, which must be satisfied by the input data to drive a

given path, is stated purely in terms of the input variables.

A predicate may be simplified and then translated into a

series of inequalities for solution, thus generating test cases.

Linear inequalities can easily be solved if variable data types

are limited to integer and real, while non-linear cases are much

more difficult and require other less formal methods which use

the generated constraints [CLA76, HOW75, RAM761.

Other problems affecting the solution of linear predicates

include: 1) array subscript variables which are dependent upon

input data, 2) loop structures, 3) subprogram interfaces, and 4)

global variables [CLA76, HOW75, RAM761. Another approach to

testing closely related to predicate solution is that of symbolic

14

evaluation. Several automated systems for performing symbolic

evaluation exist [CLA76, HOW78bl.

2.3.2.2 Functional Testing Tools

The goal of functional testing is to design and execute a

set of test cases that exercise the entire functionality of the

software [OST86]. Numerous methods have been described for

selecting specification-based test data [MYE79, WEY80, HOW81,

OST791. Also, tools have been developed to assist in the

generation and maintenance of specification-based test cases

[OST86, SOL85, CER81, CH086, BOU851. However, these tools

require considerable user interaction, and they do not fully

automate the process of test data generation.

Tools have been developed for static analysis, dynamic

testing, and the facilitation of regression testing [TSA86]. The

extension of these tools to include concurrency constructs is in

its infancy [GOR86]. Concurrency has been studied in terms of

structural testing [TAY86], as well as static analysis with

symbolic execution [YOU86]. The use of symbolic execution has

been extended to a tasking subset of Ada [DIL86], to explore

"safety propertiesll, such as mutual exclusion and freedom from

deadlock.

2.4 Reliability Models and Test Adequacy Criteria

Attempts have been made to quantify the reliability of

software entities being tested. Statistical models for various

15

testing approaches have been derived and applied [DUR80, ROS85A,

DUR81, ROS85Bl. As in all applications of statistical modeling,

assumptions and approximations must be made. Although such

models are not generally accepted as perfect indicators of

software reliability, coverage metrics will continue to be used

as indicators of software reliability until this area has

advanced far beyond its present state.

Since the purpose of testing is to determine whether a

particular piece of software contains faults, an ideal test set

would succeed only if the software contains no faults [G0075].

Unfortunately, it is not generally possible to derive such a test

set for a program, or to know that a test set is ideal. We must

use some test adequacy criterion to determine how close our test

set is to ideal and when to stop testing. Such a criterion is

called program-based if it is independent of the specification of

the program, and so is based purely on the code. Statement

coverage and branch coverage are two program-based test adequacy

criteria [WEY86].

Instrumentation of programs aids in evaluating the degree to

which an adequacy criteria have been met. Instrumentation is the

insertion of additional statements into the program which, when

the program is executed, will compute some dynamic attributes of

the program [HUA78]. For instance, a simple instrumentation

scheme would insert counters to record the number of times each

statement is executed. Instrumentation to compute certain

program-based adequacy metrics allows the testers to evaluate

16

their progress.

The adequacy measures produced by instrumentation may be

classified as control-flow coverage measures, data-flow coverage

measures [FRA88], and most recently data coverage measures

[SNE86]. One data-flow coverage measure is definition-reference

chain (dr-chain) coverage, which is concerned with the definition

and referencing of program variables [HOW87, WIL85, RAP851.

Statement and branch coverages are examples of control-flow

coverage measures. Recent work has been performed in developing

adequacy criteria derived from data flow testing criteria

[FRA86], and in comparing the various criteria [CLA86]. Some

experimental comparisons suggest that the various approaches

should be considered as complementary rather than competing

[GIR86].

2 . 5 T e s t Data Generation

A software testing problem that is very closely related to

test set evaluation is that of test data generation. Quite

often, the difference between the two blurs because test data

generation schemes generally attempt to generate data that will

satisfy some specific test data adequacy criterion. Test data

generation has been defined as consisting Ifof specifying and

providing the test input data and of calculating the test output

data" [VOG85].

Generating test inputs for a program may not appear to be a

difficult problem since it may be done by a random number

17

generator [DUR81]. However, although random testing alone has

been shown to be an inadequate method for exposing errors, when

combined with extrema1 and special value (ESV) testing, it can be

an effective method and can provide a direction for the

generation of future test cases [VOU88]. On the other hand,

algorithms for generating test data to satisfy particular

adequacy criteria have generally had very bad time and space

complexities and produced small amounts of test data. In fact,

it is not possible (i.e., there exists no algorithm) to generate

test data which causes the execution of any arbitrary program

path [MIL84].

/ DeMillo, Lipton, and Sayward [DEM78] attempted to develop a

practical test data generation methodology somewhere between

random data generation and full program predicate solution.

Noting that programmers produce code that is very close to being

correct, they observed a program property which they named the

coupling effect. Basically, the coupling effect is the ability

of test cases , designed to detec t simple errors , t o surface m o r e

subtle errors as well. Howden, on the other hand, developed a

set of functional testing rules [HOW87]. Although both of these

research efforts were directed at helping programmers test their

code, they are also directly applicable to automatic test data

generation. They are not algorithms, but instead are useful

rules of thumb. Such rules are typicaliy referred to as

heuristics, which embody certain bits of llexpert knowledge. It

18

Thus, a knowledge-based or expert system approach is very

appropriate in attacking the problem of generating test data for

software programs. This approach is made possible not only by

the maturing body of knowledge about software testing, but also

by developments in the field of rule-based systems, a branch of

artificial intelligence.

2.6 The Path/Predicate Solution Problem

A s stated earlier, test data generation algorithms are

usually designed to generate test data sets which satisfy some

particular test adequacy criterion. Since algorithms such as

these are provably nonexistent for a general program, the domains

of the algorithms are some subset of all possible programs. One

such subset is the set of all programs with only linear path

predicates. The applicability of each technique is, of course,

limited by its restricted domain. This limitation is the first

problem with conventional test data generation algorithms. The

second problem with such algorithms is that they usually have

very bad time and space complexities. For example, the path-

predicate generation/solution approach for statement coverage

must: (1) choose, from the (possibly infinite) set of possible

paths through the program, a subset of these paths which will

provide statement coverage, (2) construct a path predicate for

each chosen path, and

prcdibare for each path

The predicate solution

then (3) solve the associated path

in terms of the inputs to the program.

problem alone is very complex, and no

19

algorithm exists for solving general nonlinear predicates

[MIL84]. However, there are some good methods which will find

solutions to many predicates.

One implementation of the path predicate methodology is the

QUEST testing tool [BR086, WEY881. QUEST is applicable to a

subset of FORTRAN 77 and provides path predicate generation

options which attempt to generate test data to satisfy the

statement coverage, decision coverage, condition coverage, or

decision/condition coverage test adequacy criteria. Of course,

there is no guarantee that the predicate solution algorithm will

be able to solve a given predicate; it must halt after a

predefined number of unsuccessful attempts to find a solution.

Even with the ability to solve predicates, each solution yields

input data for only one test execution. This is the third

problem with traditional test generation methods - they produce a
relatively small number of test cases.

2 . 7 Conclusion

While QUEST/Fortran aided the testing process by automating

some structural testing techniques, its use of symbolic

evaluation leads to a number of problems: 1) limitations on the

program structure which could be handled, 2) poor space-time

efficiency of solving a predicate for each program path, 3) the

limited number of test cases that could be generated in a given

amount of time, 4) the limitations of the algorithms used to

solve the path predicates, which sometimes meant that obvious

20

path predicates were labeled as unsolvable and 5) the generation

of trivial test cases.

QUEST/Ada will address the problems encountered with path

predicates by generating test cases using a rule base as opposed

to symbolic evaluation. While the traditional instrumentation

techniques will be used to evaluate coverage, unlike

QUEST/FORTRAN, QUEST/Ada will use a formal parser/scanner to

enable the instrumentation capabilities to be easily generalized.

Further, the information obtained from this instrumentation upon

execution will be fed back to the test data generator to

successively improve the quality of the test cases. These

innovations make QUEST/Ada a unique approach to software testing.

3. Definition of System Structure

The overall structure of the QUEST/Ada system was designed

using the TAGS Input/Output Requirements Language (IORL). While

the entire set of IORL specifications is given in Appendix A ,

some of these diagrams will be used in this section for

illustration. Figure 1 shows the highest level of data flow,

with the user interacting with the test environment, called QUEST

(Query Utility Environment for Software Testing). As primary

data flows, the user supplies source code and receives coverage

analysis reports. Test cases are initially input by the user,

who may continue to augment them throughout the test process.

The user also interacts with QUEST to provide parameters to

determine the extent and duration of testing. Requests for

21

regression testing also proceed over interface QUEST-ADA-12.

QUEST provides the means by which an execution of the module

under test will produce output values for verification. Thus,

actual module execution results also proceed over interface

QUEST-ADA-21.

Figure 2 goes into more details of the QUEST system. The

module being tested is input as Ada source code to the

scanner/parser, which provides output to the test data generator

(TDG), the test execution module (TEM), and the report generator

(RGEN) . The interfaces between the various subsystems are listed

in Table 1 and described in the following section.

22

m
4J
10
0

a

(v

I

0
I

I-
m
W
3
0

4

a
a

m
c a

o m

4J-u

a
E l
C

L C

> * c m
w u

I-

* a
L n

- o m
.-I 3 D
I+\

O l -

L W
a L 3

N O O r c v

.-I .-I

n

* *a
nv) m

a J 0 0

c

a >
a
I

t
1
L
0 +

al a m
- 0

4J
.a

n o
u r n
oa a

.-I

C D

ul4-
a 0
c
c c
0 .a

I Y ! m + .
W L U l
m a l a

-r3a *

m

4
(v
I

0
I

I-
ffl
W
3
U

a
a

t--

m
u l -
* J
L U 1
o a a o !

+

a
IY m c

c o
0 .a .a
.-) + 4J
U u l J

- A a
c OIw

o a

n.-' u
m x
a m
m u ul
m m
m OIU
L U
a L +
> J u l
o o a l u w l - a

fY
c3
H
0

a

Y u
0
J
m
U
H
I-

E
W
I
U
m
J
W >
W
J

I-
In
W
I
c3
H
I
I

a

4

W

c3
H

5

a"

m m
I

0
0
I
a0

4 (v

W W al-
a 0

4J

.. ..
a a

0
ffl

u
W m

m
..

a
a 0

I
I-
Ln
W
3 a 0
u w
0 3
Offl

ffl
H

.. ..

..
Ln m
-I
U

a

U
I
c

8

0
E

E u l u l

V) C C
n o u

..
N r n * 4 (V m
I l l

3 0 0
z a a

C
0

c
9
E
L
0
4.
C
H

C
0

w
9 e
C

111
L

.d

.d

a
a
a
d
0

0

E

.d

L

n
n

rn
I
W

4

a

.I-

3
Ul
Q
o?
C
0

.d I I

u
U
0
L
3
0
tn
tl
U
*r
C
U
ti
J
L c
ul
C
H

A

ao?
a c C O

os
C W
tnZ

c3 w w
0 cc3

Nh-

ul

3
ul
0
E
0

ul

Ip
C

w
c

.d

n

a
m

m

c

Q)
Q
L

>
0 u
0

L

w
C
H

.d

m

3

N

I

0

4

a
4

u)
*r
L
0
(L
al

Q!

al
0
Q
L
0 >
0

a"

c

Q
C
Q)

Ulm
al
u l w
o w
U Q

I-

u l c
0 0

t- *a
ul

- U l
Q P I
E L
L a
O P)

Z Q !

.a

+

PI
N D
4 0
I G a

a u
c l a l

I L
I - J
c n o

I=
Q!
c3
H
0
Y
U

a

a

3 m
u
I4
l-

r
W
I
U cn
A
W
w
W
J

0 z
0
U
W
tn
I

N

W w
3
L3
c(

a

(13
CD

I
w
0
0
I

d N

w w ut-

4

.. ..
a a a n

3 n n

n

..
J u

I&
24

T a b l e 1. Description of High Level Interfaces

QUEST-ADA-21 Coverage Analysis Reports
Source Code Listing
Test Case Execution Results

4. Definition of High-Level Interfaces

4.1 Parser/Scanner Interfaces

The parser/scanner produces data structures which describe

the program under test to the test data generator and the report

generator. This includes information concerning the input

variables and parameters, condition and decision structure, and

segment or block structure. The parser also instruments the

source code by inserting probes and augmenting it with a driver

module for use by the test execution module. These interfaces

are detailed in Table 2.

25

INPUT : QUEST-ADA-12, ADA SOURCE CODE
FROM: USER

OUTPUTS : QA-13, INSTRUMENTED SOURCE CODE
TO: TEST EXECUTION MODULE

1. INSTRUMENTED DECISIONS

2. MODULE DRIVER

QA-12, SYMBOLIC REPRESENTATION INFORMATION
TO: TEST DATA GENERATOR

1. PARAMETER LIST

2. TYPE DECLARATIONS

3. DECISION/CONDITION DEFINITIONS

a. DECISION NUMBER

b. CONSTRUCT TYPE

c. DECISION STRUCTURE

QA-15, SYMBOLIC REPRESENTATION INFORMATION
TO: REPORT GENERATOR

1. DECISION/CONDITION LIST

a. DECISION NUMBER

b. CONSTRUCT TYPE

c. NUMBER OF CONDITIONS

QUEST ADA-21, SOURCE CODE LISTING
TO: USER

26

4.2 Test Data Generator Interfaces

The Test Data Generator (TDG) interfaces are given in Table

3. The TDG obtains input from the parser/scanner in the form of

a parse tree which describes the relevant structures within the

source code. It translates this information into assertions

which are used to determine the firing of the rule base.

The TDG interacts with the test execution module via test

cases and test results. The results of each test case are

analyzed by the generator so that it can make decisions for the

creation of additional test cases. This is performed by

automatically analyzing the llqualityvv of the results generated at

a given point in the testing process, where quality is determined

by coverage metrics and variable value domain characteristics.

The QA-23/QA-32 loop is reiterated automatically until a given

coverage is attained or until a user-defined check point is

reached in terms of number of test cases generated. At this

point the user will either stop the process or supply additional

parametric information (via QUEST-ADA-12) to generate additional

test data. User-defined test data may also be supplied at any of

these check points.

Also shown in Figure 2 is the potential use by the TDG of

subcomponents of the Test Coverage Analysis (TCA) (Component 4 in

Figure 2). It is currently envisioned that the same types of

analysis performed by the TCA will be used in the TDG. The

extent of interaction between these two modules will be resolved

during the detailed design.

27

4.3 Test Execution Module Interfaces

The Test Execution Module (TEM) interfaces are shown in

Table 4. TEM receives the instrumented source code sufficiently

harnessed by a driver to enable it to be executed. Thus, its

QA-12, SYMBOLIC REPRESENTATION INFORMATION
FROM: PARSER/SCANNER MODULE

QA-32, TEST EXECUTION RESULTS
FROM: TEST EXECUTION MODULE

QA-42, COVERAGE ANALYSIS RESULTS
FROM: TEST COVERAGE ANALYSIS

OUTPUTS : QA-23, TEST CASES
TO: TEST EXECUTION MODULE

1. TEST CASE NUMBER

task is merely to execute the instrumented source code using as

input the test data generated by the TDG component.

The TEM generates two outputs. The simplest of these is

information for the Test Coverage Analysis (TCA). Each test case

executed will produce an output via the instrumentation (i.e., a

side effect) which will indicate the decision/condition satisfied

by that test case. This information will be processed by the TCA

28

in order to serve appropriate information to the Report

Generator.

A more complex problem is posed by the requirements of the

TDG. Information from TEM must enable TDG to fire additional

actions from its rule base. Thus, the information must be

translated to a set of assertions either by TEM, TCA or TDG

itself. These responsibilities will be more specifically

assigned as the rule base design matures.

INPUTS : QA-13, INSTRUMENTED SOURCE CODE
FROM: PARSER/SCANNER MODULE

QA-23, TEST CASES
FROM: TEST DATA GENERATOR

OUTPUTS : QA-32, TEST EXECUTION RESULTS
TO: TEST DATA GENERATOR

1. TEST CASE NUMBER

2. DECISION NUMBER

3. LIST OF VALUES OF DECISION VARIABLES

4. LIST OF CONDITION RESULTS

QA-34, TEST EXECUTION RESULTS
TO: TEST COVERAGE ANALYZER

1. TEST CASE NUMBER

2. DECISION NUMBER

3. LIST OF CONDITION RESULTS

29

4 . 4 Test Coverage Analysis Interfaces

Table 5 presents the Test Coverage Analyzer (TCA)

interfaces. Essentially TCA takes the output generated via the

probes inserted by the instrumentation and translates this

information into the input required for efficient and

straightforward report generation. Note that this is accumulated

in two formats, one for the analysis of an individual test case,

and the other for the cumulative results of all tests performed.

As mentioned above, a primary use of the former information might

be as feedback to the TDG to automatically generate improved test

cases. However, the degree of interaction between these two

modules has not yet been resolved.

4 . 5 Report Generator Interfaces

The symbolic representation information generated by the

parser/scanner module is used in conjunction with the coverage

measurements calculated by the coverage analysis module to

produce detailed coverage analysis reports by the report

generator. The user analyzes these reports to determine if there

is a need f o r more tests. These interfaces are shown in Table 6.

30

o o - o - o - - - - - ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o ~ ~ ~ o o o ~ o o o ~ o o o ~ ~ o o o o ~ o o ~ o ~ ~ ~ ~ ~ ~ ~ o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

Table 5 . TEST COVERAGE ANALYZER INTERFACES
0 ~ ~ ~ ~ ~ 0 ~ 0 0 ~ ~ ~ 0 0 0 0 0 0 ~ ~ 0 ~ ~ ~ ~ ~ 0 0 0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

INPUT: QA-34, TEST EXECUTION COVERAGE RESULTS
FROM: TEST EXECUTION MODULE

OUTPUTS : QA-42, INTERIM COVERAGE ANALYSIS RESULTS
TO: TEST DATA GENERATOR

QA-45, INTERMEDIATE COVERAGE ANALYSIS DATA

TO: REPORT GENERATOR

1. INDIVIDUAL TEST COVERAGE

a. TEST CASE NUMBER

b. DECISION NUMBER

c. CONDITION NUMBER

d . TRUE COUNT

e. FALSE COUNT

2 . CUMULATIVE TEST COVERAGE

a. DECISION NUMBER

b. CONDITION NUMBER

DATA

DATA

c. ACCUMULATIVE TRUE COUNT

31

INPUTS : QA-45, INTERMEDIATE COVERAGE ANALYSIS DATA
FROM: TEST COVERAGE ANALYZER

QA-15, SYMBOLIC REPRESENTATION INFORMATION
FROM: PARSER/SCANNER MODULE

OUTPUTS : QUEST ADA-21, TEST COVERAGE REPORTS
TO: USER

1. REPORT TYPES

a. INDIVIDUAL TEST COVERAGE

b. ACCUMULATIVE TEST COVERAGE

2. COVERAGE TYPES

a. DECISION/CONDITION COVERAGE

b. MULTIPLE CONDITION COVERAGE

32

5. Definition of Ada Subset

The formidable task of constructing a working prototype of

an automated testing environment during a one-year period

requires a limitation on the scope of the project. Since the

goal of the prototype is to automatically generate test data for

a variety of Ada modules, these limitations will be based on the

data types allowed as input to the modules being tested.

In the area of module input variables or parameters, an

attempt will be made to handle all scaler types and subtypes.

These include integer, float, real, character, Boolean, and

enumerated types. The test environment will also be designed to

generate data for arrays and records (composite types) of these

simple types. No access types will be handled by the prototype.

If it is found to be infeasible to generate a prototype with

these capabilities, then a representative subset of types will be

selected. However, no decision has been made to eliminate other

than access types at this point. Further consideration in the

current design will be made in order to determine methods for

including access types during Phase 2.

For programs which obtain inputs from files, the same

restrictions will apply. Records with discriminants and linked

components will be deferred to the next prototype version.

These limitations are necessary because they require knowledge

about the file and data structures that cannot be obtained

directly from the code being tested. During Phase 2, formal

input specifications will be developed to handle complex data

3 3

structures and files. Consideration will be given in this phase

to establish the basis for these specifications.

The initial prototype will generate test cases for multi-

tasking Ada programs. Standard coverage metrics will be

calculated for these programs. However, they will not

necessarily be an effective indication of program correctness,

due to the unpredictable nature of rendezvous sequences.

Consideration will be given during the prototype design and

development to establish approaches for handling concurrency.

However, the actual prototyping of these approaches will be

deferred until Phase 2.

6 . Preliminary Analysis of Parser/Scanner Requirements

6.1 General Parser/Scanner Requirements

The parser/scanner module is responsible for instrumenting

the Ada source code, building the data structures required by the

rest of the QUEST system, creating a listing of the source code

f o r use by the tester, and surrounding the module under test with

an execution driver or test harness. Information contained in

the data structure must identify the control constructs, global

variables referenced (i.e., altered) within the module, and

parameters input to the module.

Instrumentation of the Ada source code is required for

determining test coverage and for providing feedback data

required by the AI test data generator. Each decision and

34

condition in the program must be instrumented so that all of the

standard coverage metrics may be calculated by the report

generator. The feedback data is used as an indication of test

case quality for directing the generation of new test data.

The data structures built by the parser will provide

information concerning the structure of the module under test.

This includes information about the number and types of input

variables and parameters, the statements and segments executed as

a result of decision outcomes, and the structure of decisions and

conditions. These data structures are used by the test data

generator and the report generator modules.

A listing of the source code is provided to the tester as an

aid in analyzing the output of the report generator. A s an

option to the user, this listing will show the embedded

instrumentation code added by the parser. Unique identification

numbers will be assigned to each decision, condition, and code

segment in the original code listing.

The last requirement of the parser/scanner module is the

creation of a driver module to execute the program under test.

This driver reads data from a file created by the test data

generator and feeds this data to the instrumented object code.

This process occurs repeatedly until the current set of test data

is exhausted.

Two parser/scanner generator packages, LALR 3.0 and BISON,

were evaluated for use in producing the instrumentation

capabilities. These were selected because of their advertised

35

I capabilities to handle the large number of productions required
I

by the Ada grammar. While LALR 3.0 appeared to function on some

small examples, there was no evidence that it could handle the

complete Ada grammar. On the other hand, BISON has shown great

promise as illustrated by the example presented in the following

subsection.

6.2 Example Module Instrumentation

In order to test BISON as a parser/scanner generator some

simple examples were run. This very early prototyping was

necessary in order to determine if there were any obstacles to

using this tool for generating the instrumentation. Listing 1

presents the first example which was tried. Note that it

contains two rlifll statements. Listing 2 shows how these were

replaced by the subroutine calls dO and dl respectively. This

replacement was performed automatically by the parser/scanner.

Note that line reference numbers were also added for further use

by the report generators.

While this is a very simple example, it demonstrates the

concept, and it represents progress far ahead of what was

expected at this point. Given that BISON is proven in this

regard, the second six months of this phase of the project can

extend the parser/scanner capabilities to a set of representative

transfer statements within Ada.

36

Listing 1. Example Ada Module

.
-- ADA EXAMPLE PROGRAM: Max3 - This program computes -- the maximum integers, -- and prints the result
-- terminal screen .

with TEXT-IO; use TEXT-IO

procedure MAX3 is

package INT-IO is new INTEGER-IO(1NTEGER);
use INT-IO;

I, J, K, L: INTEGER;

begin

-- input the three values from the screen
GET(1) ; GET(J) ; GET(K) ;

-- compute the maximum of I and J
if I > J then

L := I;
else

L := J;
end if;

-- compute the maximum of I, J, and L
if L < K then

L := K;
end if;
-- print out the answer
NEW LINE;
PUTT" The largest is: I t) ;
PUT (L) ;
NEW-LINE ;

end MAX3;

37

Listing 2. Instrumented Example Ada Module

[71
r81

r121
r131

.
-- ADA EXAMPLE PROGRAM: Max3 - This program computes -- the maximum integers, -- and prints the result -- terminal screen .
with TEXT-IO; use TEXT-IO

procedure MAX3 is

package INT-IO is new INTEGER-IO(1NTEGER;
use INT-IO;

I, J, K, L: 'INTEGER;

begin

-- input the three values from the screen
GET(1) ; GET(J) ; GET(K) ;

-- compute the maximum of I and J
if do(I > J) then

else

end if;

L := I;

L := J;

-- compute the maximum of I, J, and L
if d l (L < K) then

end if; -- print out the answer
NEW LINE;
PUTT" The largest is: I t) ;

PUT (L) ;
NEW - LINE ;

L := K;

end MAX3;

38

I 7.0 Preliminary Analysis of the Test Data Generator (TDG)

The objective of the test data generator is to generate a

set of test data that will cover as many conditional branches in

a program as possible. Typical conditional branches are

implemented in IF-THEN and CASE statements. At this point

attention will be focused on the coverage of the IF-THEN

branches. An IF-THEN statement can be expressed as

IF cond THEN fl ELSE f2

The logical expression, cond, determines the branch of the

next execution. In order to cover all branches of the statement,

i.e. fl and f2, a set of test data should provide conditions

such that cond would be true in some cases and false in other

cases. A necessary test data set may be defined as a pair of

test inputs where one provides truth value for cond and the other

provides false value. Cond can be further defined as

cond : expl re1 exp2

Expl and exp2 can be any arithmetic expressions. After

evaluation, each of the expressions will yield a numerical value.

Re1 is either =, c , = c , >, >=, or <>. The evaluation of cond

would yield truth or false value. No matter what the re1 is, the

inclusion of all the following three cases would guarantee that a

test data set covers both the true and the false statement of an

IF-THEN statement:

1. expl + e = exp2
2. expl = exp2
3 . expl - e = exp2

Here, e is defined as a small positive number. The basic

39

objective is to generate a test data set that covers both sides

of the truth/false boundary of cond. This will be the guideline

for the test data generation for this phase of the project. This

general approach has been tested in a very rudimentary form, and

the results have been summarized in a paper given in Appendix B.

The approach showed great promise in automatically generating

coverage far superior to that obtained by random test case

generation.

7.1 Cases of Arithmetic Expressions

In order to generate test data that will cover the three

cases listed above, the structures of the arithmetic

expressions, i.e. expl and exp2, must first be recognized. The

following list shows the structures that will be studied:

1. constant. e.g. exp = 10
2. single variable. e.g. exp = x
3 . single variable + (-) constant. e.g. exp = x + (-) 5
4 . single variable * (/) constant. e.g. exp = x * (/) 5
5. two variables (+,-). e.g. exp = x + (-) y
6. two variables (*, /) . e.g. exp = x * (/) y
7. two variables + (-) constant. e.g. exp = x +(-) y +(-) 5
8. two variables * (/) constant. e . g . exp = (x+(-)y)/5,

or (x+(-)y)*5

The reason for restricting consideration to these relatively

simple structures is that the condition boundaries of the

expressions can be found through simple arithmetic computations.

For more complicated expression structures, mathematical

subroutines can be used to find the boundaries.

One further assumption required to initiate prototype design

is that the variables appearing in expl and exp2 are input

4 0

variables. This means that, aside from the arithmetic

operators, the components of expl or exp2 must be either a

constant or an input variable.

7.2 Heuristics For Finding the Condition Boundaries

The computation for finding the condition boundaries can be

greatly simplified by rearranging the logical expression, cond,

in the IF-THEN statement. The following two rules will be used

for this purpose:

Rule 1

If expl does not contain variables
then (1) swap expl and exp2

(2) adjust re1

Rule 2

If expl contains constants
then move all possible constants to exp2

These rules simplify expl such that it contains at least one

variable and no constants. This arrangement reduces the number

of combination cases between expl and exp2.

condition

For example, given a

3 =< 5 * x + 4

expl: 3
exp2: 5 * X + 4
re1 : =<

By applying Rule 1, it becomes

5 * x + 4 >= 3

By applying Rule 2, it becomes

x >= -0.2

41

From this simplification process, the condition boundary can

be found without going through other computations. For the above

example, three test data points can be generated for X. They are

X = -0.2 + e, X = -0.2, and X = -0.2 - e.
NOW, we will study all possible combinations of expl and

exp2. Under each combination, a set of test data is suggested.

The generalized cases include:

1. expl: X exp2: C1

boundary: X = C1

test data : 1. X = C1 - e
2. x = c1
3. X = C l + e

Note: e = (upper-bound - lower-bound) of X / 100
2. expl: X exp2: Y

boundary: X = Y

assign y1 = (upper-bound + lower-bound) of Y / 2

test data: 1. X = y1 + e , y = Y1
2. x = y1 I y = Y1
3. X = yl - e , y = Yl

Note: Since the goal is to generate a set of test data that
would cover both sides of the boundary, it does not matter
which portion of the boundary the test data resides. The
choice made here is to let Y be at the middle point of its
range.

3. expl: X exp2: Y + C1.
boundary: X = Y

assign y1 = (upper-hound + lower-bound) of Y / 2
y = Y1

test data: 1. X = y1 + C1 + e , Y = y1
2. x = y1 + c1 I y = Y 1

42

3. X = y l + C 1 - e l Y = y 1

4. expl: X exp2: Y * C1 (or Y / C1)

boundary: X = Y * C1
assign y1 = (upper-bound + lower-bound) of Y / 2

y = Yl

test data: 1. X = y1 * C1 + e I y = Yl
2. x = y1 * c1 I y = Y1
3. X = y l * C 1 - e I y = Y1

5. expl: X exp2: C1 * X + C2 * Y + C3

simplification steps:

X re1 c1 * x + c2 * Y + c3
(1-C1) * x re1 c2 * Y + c3

X re1 c4 * Y + c5
boundary: X = C4 * Y + C5
assign y1 = (upper-bound + lower-bound) of Y / 2

y = Y1

test data: 1. X = C4 * y1 + C5 + e , y = Y1
2. x = c4 * y1 + c5 I y = Y1
3. x = c4 * y1 + ~5 - e I y = Y1

6. expl: X exp2: C1 * X * Y + C2
assign y1 = (upper-bound + lower-bound) of Y / 2

boundary: X = C1 * y1 * X + C2 = C3 * X + C2

simplification steps:

y = Y1

X re1 c3 * x + c2

(1-C3) * X re1 c2

X re1 I c4

test data: 1. X = C4 + e I

2. x = c4 I

3. X = C4 - e

43

7. expl: C1 * X + C2 * Y exp2: C3 * X + C4 * Y + C5
simplification step:

c 1 * x + c2 * Y re1 c3 * x + c4 * Y + c5
(C1 - C3) * x re1 (C4 - C2) * Y + c5

X re1 I C6 * Y + C7
the condition then becomes a case of (6).

8. expl: C1 * X + C2 * Y exp2: C3 * X * Y + C4

assign y1 = (upper-bound + lower-bound) of Y / 2

simplification steps:

y = Yl

c1 * x + c2 * y1 re1 c3 * x * y1 + c4
c1 * x + c5 re1 c3 * x + c4
c1 * x re1 C3 * X + C6

(C1 - C3) * x re1 C6

X re1 I c7

the problem then becomes a case of (1).

9. expl: X * Y exp2: C1

boundary: X * Y = C1

assign y1 = (upper-bound + lower-bound) of Y / 2

simplification steps:

y = Y1

X re1 I c2

test data: 1. X = C2 + e I y = Y 1
2. x = c2 I y = Y 1
3. X = C 2 - e r Y = Y 1

10. expl: X exp2: C1 * Y / X + C2
assign y1 = (upper-bound + lower-bound) of Y / 2

44

y = Y1
simplification steps:

X re1 c1 *'y1 / x + c2
X re1 c3 / x + c2

x2 - c2 * x - c3 re1 0

assign x1 = (c2 + SQRT (c22 + 4 * ~ 3)) / 2

test data: 1. X = x1 + e r Y = Y 1
2. x = x1 r Y = Y 1
3. X = x l - e r Y = Y 1

Note: Since the goal is to cover both sides of the boundary,
three data points will be sufficient.

7.3 Structural Methods

The Test Data Generator (TDG) uses structural methods to

automatically generate a series of test packets to fully exercise

the module under test. The initial prototype will attempt to

obtain 100% condition/decision coverage, although the concept

could be extended to any type of coverage metric.

The traditional technique f o r generating test data using

structural or syntax-based methods is to: (1) determine the

desired path through a program, (2) use a form of symbolic

execution to obtain a predicate for that path, and (3) solve the

path predicate in terms of the program's input variables. By

executing the program with the calculated input variables, the

desired path will be executed. QUEST/Fortran used this method

and determined that path predicate solution was too complex to be

universally effective.

The technique used by QUEST/Ada differs considerably from

4 5

the above-mentioned technique. The new system attempts to

determine the relationships between the input variables and the

decisions involved in the program's flow control constructs. Most

of these decisions may be described by the following grammar:

decision:: condition

condition:: expression rel-op expression
logical-op:: and I or I xor

In other words, decisions consist of conditions separated by

I condition logical-op condition

rel-op : : = I /= I < I <= I > I >=

logical operators and conditions consist of expressions separated

by relational operators. Each of these expressions may be

considered to be a function of the program's inputs. If a

particular function were known, then it would be a trivial matter

to calculate the input parameters necessary to force the

condition to be true or false. Although the exact function

cannot be determined without symbolic execution, information

about the function may be obtained by inserting probes in the

source code so that the value of the expression may be evaluated

and saved at run-time. Then, by observing the response of the

expression for various input parameters, the relationship between

the inputs and the expression may be identified. Although

situations occur where the function is too complex and therefore

impossible to identify by looking only at the inputs and outputs,

by confining the domain of interest to those situations where the

expression on the left-hand side of the condition is almost equal

to the expression on the right-hand side, an approximation of the

4 6

function may be determined. The reason for making this zero-

crossing point the domain of interest is two-fold: (1) the truth

value of the condition changes at this point, and (2) many errors

in control flow logic are uncovered with test data that force the

expressions into this domain [HOW87].

The Test Data Generator (TDG) operates by looking at the

results of the previously run tests and determining those

decisions that have only had one side of their truth value

covered. The TDG then examines each of the conditions comprising

the decision. The test data is analyzed and those sets of data

that force the left-hand side of a condition close to the right-

hand side are then slightly modified in an attempt to drive the

condition to its other truth value. The justification behind

this is found in Prather [PRA87] and is summarized here. If a

particular condition, Cn, is reached, then all the preceding

conditions, C1 through Cn-1, along the path have also been

satisfied. In order to drive the target condition, Cn, to its'

other truth value, all of the preceding conditions must once

again be satisfied. In other words, the inputs are close to the

intended goal and a slight modification of the input data is all

that is required. Note that by driving the other branch of a

decision, other paths and decisions are uncovered which are then

treated by the next iteration of the TDG.

The TDG uses a variety of methods for slightly modifying the

test sets. If it can be determined that an expression is always

4 7

increasing (or decreasing) with respect to an input variable over

the domain of interest, then Newton's method is used to calculate

a new test set. Other means of generating new test data include

incrementing (and decrementing) by a constant, incrementing (and

decrementing) by a percentage, and generating a random number for

one of the parameters. As the rule base develops other methods

will also be considered.

Since the TDG generates data only for those decisions that

have had one of their truth values covered, there must be a way

to initialize it. This may be accomplished by user-defined test

sets or by the generation of random data. Provisions have also

been made to allow the user to enter designed test cases at any

time during the testing process. Additionally, the user may hold

one or more of the inputs constant while the TDG generates data

for the other inputs.

7.4 System Interface Mechanism

The technical description given above tends to obscure the

interactions of the Test Data Generator (TDG) with the rest of

the system. This section is intended to clarify the mechanisms

by which this is accomplished.

The TDG will only respond to feedback information from the

Test Execution Module (TEM) and the Test Coverage Analysis (TCA)

component. However, it should be clear that these two modules

cannot function without some test cases being supplied from

somewhere. While they will view this information as coming

4 8

through the same interfaces as data actually generated by TDG

(and hence will respond exactly the same), in reality the

original set of data supplied to TEM will either be user supplied

or randomly generated. It is expected that user-supplied test

cases will be part of any good Ada software design. The QUEST

design accommodates these by allowing them to be input first

prior to automatically generating test cases.

As far as the interface mechanism is concerned, the user

will have placed these test cases in a file prior to the

initiation of module testing. These will be passed through TCA

to TEM for the first round of tests. This will effectively prime

the pump to enable TEM and TCA to return coverage and execution

information which will drive the TDG. At this point TDG will use

this information to generate another packet of test cases which

will be added to the file of test cases and marked as being TDG

rather than user produced.

After a packet of test data is generated, a round of

executions of this data will follow. Updated TEM and TCA

information will then be returned to TDA in order to prepare for

the next round of test data generation. After each round the

test cases added to the file will be marked according to the

round in which they were generated.

For purposes of efficient verification and regression

testing it might be beneficial to indicate a priority on the

tests. It is expected that TDG will generate hundreds or even

thousands of tests for a given module. Depending upon the

49

automated comparison capability, it may not be possible to verify

every one of these against an independent execution of the

design. This being the case, the following priority scheme is

suggested:

0 - user defined test cases (highest);

1 - first test cases to add to control coverage; these
along with the 0-priority cases will form a minimal
test set;

2 - subsequent n test cases which do not add to control
coverage but provide additional data coverage, where n
is a value dependent upon the program characteristics;

3 - this is the lowest priority, and it would be assigned
to any test case not falling in the three given above.

8. Preliminary Design of the User Interface

A concerted effort was made to separate the user interface

design documentation from the other parts of the design. This

was done to eliminate the complexity that would result, making

the diagrams virtually unreadable. For this reason the user

interface is omitted from the IORL system description given in

Appendix A.

This is not to minimize the importance of the user interface

design. In fact, as the user interface began to evolve it tended

to contribute heavily to the system structural design. Further,

the user interface is important from the standpoint that

QUEST/Ada will be worthless unless it can be operated easily by

Ada code test personnel.

The user interface presented in this section should be

5 0

regarded as a working document. It is expected to continue to

evolve throughout the remainder of this phase of the project. It

will also provide the basis for the user manual for the QUEST/Ada

system.

Figure 3 gives an overview of the user interface as it

interacts with the four components of the system (compare with

the IORL S B D , document: QUEST). The QUEST Main Menu, given in

Menu 0 is the overall controlling menu for the system. It will

appear when QUEST is invoked from the operating system. Each

entry of this menu corresponds to a function in Figure 3. Each

of these will be described in a separate subsection below.

8.1 System Def in i t ion Menu

When this selection is chosen from the QUEST Main Menu, Menu

1 will appear. This menu enables the user to create and delete a

llsystemll within QUEST. In this context, a llsystemll is a complete

functional collection of Ada source code files. That is, all

modules necessary for executing any of the units to be tested

must be included in the system at this time. We will refer to

this system below as the system under test or SUT.

When the System Definition screen is initially displayed,

the directory of the current default pathname (initialized to

I1*.ADA1I by QUEST) is visible in the text window. A user may then

select any of the files displayed by highlighting them with the

arrow keys and plrcssing I1Return.l1 The number of files selected

for inclusion in the QUEST system is constrained only by the

51

n

W a

U

5 1A

QUEST Main Menu

1 System Definition

2 Module Selection

3 Automatic Testing

4 Regression Testing

5 Variable Definition

6 Test Result Reports

7 Utilities

PF1 - Help
PF4 - Exit

I Current Module: I

Menu 0. QUEST Main Menu

memory limits of the computer. When the user has selected all of

the files to be included in the QUEST system, pressing 11PF211 will

create that system and prompt the user for a system name. As

with all QUEST menus and screens, IIPF1I1 displays the help screen,

and IIPF4l' returns to the main menu.

8.2 Module Selection Menu

When this selection is chosen from the QUEST Main Menu, Menu

2 will appear. This menu allows the user to select the module

under test (MUT). Note that it is left to the QUEST user to

52

QUEST

System Definition Menu

This box will contain a listing of all Ada modules in
the user's library.

Select files and press return

PF1 - Help
PF2 - Create System
PF3 - Delete System
PF4 - Main Menu

Current Module:

Menu 1. QUEST System Definition Menu

insure that all modules necessary to the execution of the MUT are

included in SUT. If a module necessary to the execution of the

MUT is not in the SUT, the parser/scanner will return an error.

When the Module Selection menu is initially displayed, the name

of the current SUT and all modules included in that system are

53

QUEST

Module Selection Menu

This box contains all modules from the system under test.

Select module and press return

PF1 - Help
PF4 - Main Menu

Current Module:

Menu 2. QUEST Module Selection Menu

displayed in the text window. The user can select a module to

test by highlighting it with the arrow keys and pressing

llReturn.ll Unlike the system definition screen, only one module

at a time may be selected for testing. When the user has

selected a module, pressing 11PF4" returns to the main menu.

8.3 Automatic Testing Menu

When this selection is chosen from the QUEST Main Menu, Menu

3 will appear. This menu monitors the generation and execution

of test cases. When the Automatic Testing screen is initially

displayed, the user is prompted for a maximum number of test

5 4

QUEST

Automatic Testing Menu

Maximum Number of Test Packets:
Packets Created:
Tests Created:

Last Test Executed:

Coverage Achieved:

Decision:

Condition:

User Defined Variables:

PF1 - Help
PF2 - Begin Testing
PF3 - Halt Testing

PF4 - Main Menu

Current Module:

Menu 3. Automatic Testing Menu

packets to create. Each test packet generated will contain a

certain number of test cases to be executed by the TEM. QUEST

55

initializes the number of test cases per packet to 50, but users

may change the number using the Utilities menu.

After the user has specified the maximum number of packets

to create, @rPF2@r initiates the generation and execution of test

cases. As the tests are created, the number of packets and the

number of test cases created is reported on the Automatic Testing

screen. After a complete test packet has been generated, the TEM

begins executing tests. The last test executed and the coverage

achieved to that point are reported to the Automatic Testing

screen by the TCA. The input variables (i.e., those variables

for which values can be generated by the TDG) whose values have

been set explicitly by the user are also reported on the Automat-

ic Testing screen. The user may request a halt to the test

generation/execution at any time. However, test data generation

and execution will only stop upon completion of a test packet.

When the user requests a halt, a message that the request was

acknowledged is displayed on the screen, and test

generation/execution stops as soon as possible. If test execu-

tion completes successfully, a message to that effect is

displayed and the user can press @@PF41@ to return to the main

menu.

8 . 4 QUEST Regression Test Menu

When this selection is chosen from the QUEST Main Menu, Menu

4 will appear. This menu enables files of previously performed

tests to be executed again automatically. This is essential

56

after any program modification to assure that errors have not

been introduced during debugging. The data reported to the

Regression Testing screen is identical in form and meaning to the

information reported to the Automatic Testing screen, except that

data which pertains to the generation of test cases. The 11PF21t

and 1tPF311 keys also work in the same way as those on the

Automatic Testing screen.

QUEST

Regression Testing Menu

Tests on File:

Last Test Executed

Coverage Achieved
I I I

~~~~~ 

Decision 

Condition 

PF1 - Help 
PF2 - Begin Testing 
PF3 - Halt Testing 
PF4 - Main Menu 

Current Module: 

Menu 4. Regression Test Menu 



8 . 5  QUEST Variable Definition Menu 

When this selection is chosen from the QUEST Main Menu, menu 

5 will appear. This menu enables users to fix values for any or 

all of the input variables of the MUT. This process is referred 

to as "locking'l the variables, as user definition of values 

prevents the TDG from creating values for those variables. When 

the Variable Definition screen is initially displayed, the varia- 

bles recognized as input variables by QUEST are displayed in the 

text window. Any variables that are composite types (such as 

arrays and records) are denoted with a to the left of the 

variable name. If a composite variable is selected, the name of 

that variable is placed in the upper text window and the varia- 

ble's components (i.e. fields in a record, elements in an array, 

etc ...) are placed in the main text window. The user can descend 

as far as the composite type allows, and can return to the depth 

immediately above the current depth by selecting the I @ A A A U P A A A 1 l  

marker that appears in the top left of the main text window for 

every composite variable. Variables that are currently user 

defined are marked with an to the left of the variable name. 

The user may select a variable for definition by highlighting it 

with the arrow keys and pressing return. When a variable is 

selected, its type, scope, and current user-defined value (if any 

exists) are displayed on the screen. The user can then enter a 

new value for that variable in the "New Valuet@ field. 



r 

PF1 - Help 
PF4 - Main Menu 

Current Module: 

Menu 5. Variable Definition Menu 

8.6 Testing Result Reports Menu 

When this selection is chosen from the QUEST Main Menu, Menu 

6 will appear. This menu enables the selection of reports 

patterned after those generated in QUEST/FORTRAN [BR087]. 

8.7 QUEST Utilities Menu 

When this selection is chosen from the QUEST Main Menu, Menu 

7 will appear. These are miscellaneous utilities necessary f o r  

the functions of QUEST but not logically falling within the other 

59 



routine QUEST functions. 

8.8 Summary of User Interface Design 

In the original plan it was not envisioned that the user 

interface would be to this state of design at this time. Howev- 

er, given the user interface of QUEST/FORTRAN along with the 

solidification of the new test-case-generation approach, the 

preliminary design of the user interface could proceed. The 

documentation given above will form the basis for an early user 

interface which will facilitate the remainder of the design and 

QUEST 

Testing Result Reports Menu 

1 Test Coverage Report 

2 Cumulative Coverage Report 

3 Regression Test Report 

Select menu option and press return: 

PF1 - Help Menu 
PF4 - Main Menu 

I I Current Module: 

Menu 6. Test Results Reports Menu 

6 0  



I development of the other component prototypes. For this reason 

this portion of the design/development is being allowed to lead 

the others. Recognize that many modifications of the user inter- 

face design are expected. The documentation in this section will 

be modified and heavily augmented during prototype development to 

form the user manual. 

9. Detailed Plan for Project 

Chart 1 is a Gantt chart which shows the project activities 

for Phase 1 and their expected duration. All activities shown to 

QUEST 

Utilities Menu 

Execute Single Test Case 

Regression Test Set Default: 
Minimal Test Set 
Complete Test Set 

Delete System 

PF1 - Help 
PF4 - Main Menu 

I 1 Current Module: 

Menu 7. QUEST Utility Menu 

61 



be completed by week 26 have been completed. The remainder are 

either in progress or are yet to be initiated. In summary, the 

following activities have been completed: (1) literature review, 

(2) requirements analysis (all subactivities) and ( 3 )  evalua- 

tion/selection of development tools, with the exception of the 

report generation and user interface tools. The following 

activities have been initiated and are still in progress: (1) 

preliminary design (all subactivities), ( 2 )  interface design (all 

subactivities) and ( 3 )  prototype development for the 

parser/scanner and the test data generator. The remainder of the 

activities, including prototype development for the remaining 

components and all detailed design activities have not yet been 

initiated. These will be initiated at the start times indicated 

by the Gantt chart. 

The plans given above are for the first year, which is the 

first phase of a three-phase project to design and develop a 

prototype environment to facilitate Ada code testing. Detailed 

plans for Phase 2 will be made as indicated in the Gantt chart. 

These have been deferred to take advantage of knowledge gained 

during Phase 1. At this point the following broad requirements 

statements can be made with regard to the continuation of this 

project into Phase 2: (1) Refinements will be required in order 

to improve the efficiency of QUEST/Ada and make the prototype 

more generally applicable, (2) Concurrency constructs will 

require that the dimensions of time and sequence be considered 

(the prototype designed under Phase 1 has not included such 

62 



Chart 1. 

~~~ 
~

Gantt Chart for Project Planning for Phase 1

Literature Review
Requirements Analysis
Definition of Scope
Definition of Structure
Definition of high-level Interfaces
Definition of Ada Subset
Parser/Scanner Req.
Test Data Generator Req.
Test Execution Module Req.
Test Coverage Analysis Req.
Report Generator Req.
Evaluation of development tools
P arser/Scanner to ols
Ai tools
Report generation tools
User interface tools

Preliminary Design (PD)
Parser/Scanner PD
Test Data Generator
Test Execution Module PD

. Test Coverage Analysis PD
Report Generation PD

Interface Design (see IORL)
QUEST-ADA-12
QUEST-ADA91
QA-12
QA-13
QA-15
QA-23
Q A - 3 2
QA-34
QA-42.
QA-45

Prototype Development
Parser/Scanner Prototype
Test Data Generator Prototype
Test Execution Module Prototype
Coverage Analysis Prototype

Report Generator Prototype
Detailed Design (DD)
Parser/Scanner DD
Test Data Generator DD
Test Execution Module DD
Coverage Analysis DD
Report Generator DD

Detailed Plans for Phase 2

6 3

consideration), and (3) A major effort will be required to extend

the current prototype to the broad range of types which Ada

supports, especially access types. Detailed plans for these

activities will be discussed with NASA technical management as

well as Ada practitioners as Phase 1 continues.

Plans for Phase 3 are still quite tentative. However, it

appears that this phase will be required to turn the prototype

environment into a working production quality system useful for

field evaluation and actual Ada system code testing. The

original proposal coupled the university contractor with a

private subcontractor for the major system development activities

of QUEST/Ada. A s the prototypes continue to be developed and

tested, this approach will be evaluated.

64

[ADR8 2 3

*[AH0851

[BE18 3 3

[BE1841

[BOE75]

[BOU85]

[BR086a J

[BR086bl

[BR087]

[CER8 11

[CH086]

Adrion, W. Richards, et al., Validation, Verification,
and Testing of Computer Software", ACM Computing Sur-
V8yS VOl. 14, June 1982.

Aho, A. V., Sethi, R. and Ullman, J.D., Compilers,
Principles, Techniques, and Tools, Reading, Massachu-
setts: Addison-Wesley Publishing Company, 1986.

Beizer, B., Software Testing Techniques, New York: Van
Nostrand Reinhold Company, 1983.

Beizer, B., Software System Testing and Quality Assur-
ance, New York: Van Nostrand Reinhold Company, 1984.

Boehm, B. W., et al., ttSome Experience with Automated
Aids to the Design of Large-Scale Reliable Softwarell,
IEEE Trans. on Software Engineering, Vol. SE-1, March,
1975.

Bouge, L., Choquet, N., Fribourg, L., and Gaudel, M.
C., IIApplication of Prolog to Test Sets Generation from
Algebraic Specificationst1, TAPSOFT Joint Conference on
Theory and Practice of Software Development, March
1985.

Brown, D. B., Haga, Kevin D., and Weyrich, Orville,
Jr., "QUEST - Query Utility Environment for Software
Testing1#, International Test and Evaluation Association
1986 Symposium Proceedings, pp. 38-43.

Brown, D. B., "Test Case Generator for TIR Programsl1,
Contract Number DAAH01-84-D-A030 Final Report,
September 30, 1986.

Brown, D. B., "Advanced Simulation SupportIf, Contract
Number DAAHOI-84-A030/0006 Final Report, June 17, 1987.

Ceriani, M., Cicu, A., and Maiocchi, M.., IIA Methodol-
ogy for Accurate Software Test Specification and
Auditingll, in Computer Program Testing, 1981.

Choquet, N. , "Test Data Generation Using a Prolog with
Constraints", in Proc. Workshop on Software Testing,
IEEE Comnuter Society Press, July 1986.

*Reference not discussed in Section 2.

65

[CLA76]

[CLA86]

[DIL88]

[DEM78 3

[DEL7821

[DUR8 0 3

[DUR8 1 3

[DUR84 3

* [FA1851

[FIS88]

[FOS80]

[FRA86]

Clarke, Lori A., "A System to Generate Test Data and
Symbolically Execute Programstt , IEEE Transactions on
Software Engineering, Vol. SE-2, pp. 215-222, September
1976.

Clarke, L. A . , Podgurski, A., Richardson, D. J. and
Zeil, S. J., "An Investigation of Data Flow Path Selec-
tion Criteria", Proc. Workshop on Software Testing,
IEEE Computer Society Press, July 1986.

Dillion, L. K., llSymbolic Execution-Based Verification
of Ada Tasking Programst1 , 3rd International IEEE
Conference on Ada Applications and Environments, May,
1988.

DeMillo, R. A., Lipton, R. J., and Sayward, F. G.,
**Hints on Test Data Selection: Help for the Practicing
Programmert1, IEEE Computer, Vol. 11, No. 4, April 1978.

Dentsch, M. S., Software Verification and Validation,
Englewood Cliffs, NJ, Prentice-Hall Inc., 1982.

Duran, J. W. and Wiorkowski, J. J., IIQuantifying Soft-
ware Validity by Samplingtt, IEEE Transactions on
Reliability, Vol. R-29, No. 2, June 1980.

Duran, J. W. and Ntafos, S., IIA Report on Random
Testing", in Proceedings of the 5th International
Conference on Software Engineering, March 9-12, 1981.

Duran, J. W. and Ntafos, S., !#An Evaluation of Random
Testingt1 , IEEE Transactions on Software Engineering,
VOl. SE-10, pp. 438-444, July 1984.

Fairley, R. E., Software Engineering Concepts, McGraw-
Hill, New York, 1985.

Fisher, A. S., CASE - Using Software Development Tools,
John Wiley t Sons, Inc., New York, 1988.

Foster, K. A., ttError Sensitive Test Case Analysis
(ESTCA) I t , IEEE Transactions on Software Engineering ,
Vol. SE-6, pp. 258-264, May 1980.

Frankl, P. G., and Weyuker, E. J. , "Data Flow Testing '
in the Presence of Unexecutable Pathstt, in Proc. Work-
shop on Software Testing, IEEE Computer Society Press,
July 1986.

66

[FRA88]

[GIR861

[GLA81]

[GO0751

[GOR86]

[HOW75]

[HOW7 6 3

[HOW78al

[HOW78bl

[HOW801

[HOW811

THOW82aI

Frankl, P. G., and Weyuker, E. J., "An Applicable
Family of Data Flow Testing Criteria", I E E E Trans on
Software Engineering, Vol. 14, No. 10, October 1988.

Girgis, M. R., and Woodward, M. R., "An Experimental
Comparison of the Error Exposing Ability of Program
Testing Criteriat1, in Proc. Workshop on Software
Testing, IEEE Computer Society Press, July 1986.

Glass, Robert L. , llPersistent Software Errorsa1, IEEE
Transactions on Software Engineering, Vol. SE-7, pp.
162-168, March 1981.

Goodenough, J. B. and Gerhart, S. L., llToward a Theory
of Test Data Selection@@, IEEE Transactions on Software
Engineering, Vol. SE-1, No. 2, June 1975.

Gordon, A. J., and Finkel, R. A., "TAP: A Tool to Find
Timing Errors in Distributed Programst1, in Proc. Work-
shop on Software Testing, IEEE Computer Society Press,
July 1986.

Howden, W. E., llMethodology for the Generation of
Program Test Data", IEEE Transactions on Software Engi-
neering, Vol. C-24, May 1975.

Howden, W. E.,llReliability of the Path Analysis Testing
Strategy@#, IEEE Transactions on Software Engineering,
Vol. SE-2, September 1976.

Howden, W. E., llTheoretical and Empirical Studies of
Program Testing", IEEE Transactions on Software Engi-
neering, Vol. SE-4, July 1978.

Howden, W. E., IIDISSECT - A Symbolic Evaluation and
Program Testing System#@, IEEE Transactions on Software
Engineering, Vol. SE-4, January 1978.

Howden, W. E. , llFunctional Program Testing", IEEE
Transactions on Software Engineering, Vol. S E - 6 ,
March 1980.

Howden, W. E., "Errors, Design Properties, and Func-
tional Program Testing", in Computer Program Testing,
1981.

Howden, W. E., llLife-Cycle Software Validationg1,
IEEE Computer, Vol. 15, No. 2, February 1982.

67

[HOW8 2b]

[HOW861

[HOW871

[HUA75]

[HUA78]

[US831

[MEY7 9 3

[MIL8 4 3

[NTA79 3

[NTA84]

* [NTA8 8 3

[OST79 3

[OST86]

Howden, W. E., "Weak Mutation Testing and Completeness
of Test Sets1', IEEE Transactions on Software Engineer-
ing, V O ~ . SE-8, July 1982.

Howden, W. E., !'A. Functional Approach to Program
Testing and Analysis", IEEE Transactions on Software
Engineering, Vol. SE-12, October 1986.

Howden, W. E., Functional Program Testing and Analysis,
McGraw-Hill, New York, 1987.

Huang, J. C., "An Approach to Program Testingv1, ACM
Computing Surveys, Vol. 7, September 1975.

Huang, J. C., IIProgram Instrumentation and Software
Testing", IEEE Computer, Vol. 11, No. 4, April 1978.

Laski, J. W.,, and Korel, B., "A Data Flow Oriented
Program Testing Strategy@*, IEEE Transactions on Soft-
ware Engineering, Vol. SE-9, May 1983.

Myers, G. J., The Art of Software Testing, New York:
John-Wiley & Sons, 1979.

Miller, E. F., "Software Testing Technology: An Over-
view", in Handbook of Software Engineering, New York:
Van Nostrand Reinhold Company, 1984.

Ntafos, S. C. and Hakimi, S. L., "On Path Coverage
Problems in Digraphs and Applications to Program Test-
ing", IEEE Transactions on Software Engineering, Vol.
SE-5, September 1979.

Ntafos, S. C., I'On Required Element Testing", IEEE
Transactions on Software Engineering, Vol. SE-10,
November 1984.

Ntafos, S. C. ,'*A Comparison of Some Structural Testing
Strategiest1, IEEE Transactions on Software Engineering,
Vol. 14, June 1988.

Ostrand, T. J. and Weyuker, E. J., 'IError-Based Test-
ing#', in Proc. 1979 Conf. Inf. Sciences and Systems,
1979.

Ostrand, T. J., Sigal, R.., and Weyuker, E. J.,,'lDesign
for a Tool to Manage Specification-Based Testing", in
Proc. Workshop on Software Testing, IEEE Computer
Society Press, 1986.

68

[PAN781

[PRA87]

1-76]

[RAP851

[RED83 3

[ROS85Al

[ROS85B]

[RUB751

[SH08 3 3

[SNE86]

[SOL851

Panzl, D. J. , IIAutomatic Software Test Drivers", IEEE
Computer, Vol. 11, No. 4, April 1978.

Prather, R. E. and Myers, J. P., Jr., ##The Path Prefix
Software Testing Strategytt, IEEE Transactions on Soft-
ware Engineering, Vol. SE-13, No. 7, July 1987.

Ramamoorthy, C. V., "Analysis of Graphs by Connectivity
Considerationst1, Journal of the ACM, Vol. 13, April
1966.

Ramamoorthy, C. V. and Ho, S. F., "Testing Large Soft-
ware with Automated Software Evaluation Systemstt, IEEE
Transactions on Software Engineering, Vol. SE-1, March
1975.

Ramamoorthy, C. V. et al., "On the Automated Generation
of Program Test Data", IEEE Transactions on Software
Engineering, Vol. SE-2, December 1976.

Rapps, S. and Weyuker, E. J., tlSelecting Software Test
Data Using Data Flow Informationt1, IEEE Transactions on
Software Engineering, Vol. SE-11, No. 4, April 1985.

Redwine, S. T., Jr.., "An Engineering Approach to Soft-
ware Test Data Designtt, IEEE Transactions on Software
Engineering, Vol. SE-9, March 1983.

Ross, S. M., IIStatistical Estimation of Software Reli-
abilityv1, IEEE Transactions on Software Engineering,
Vol. SE-1, No. 5, May 1985.

Ross, S. M., "Software Reliability: The Stopping Rule
Problem", IEEE Transactions on Software Engineering,
Vol. SE-11, No. 12, December 1985.

Rubey, R. J., et al., ttQuantitative Aspects of Software
Validation1#, IEEE Transactions on Software Engineering,
Vol. SE-1, June 1975.

Shooman, M. L., Software Engineering, New York: McGraw-
Hill Book Company, 1983.

Sneed, H. M. , "Data Coverage Measurement in Program
Testingvt, in Proc. Workshop on Software Testing, IEEE
Computer Society Press, July 1986.

Solis, D. M., llAutoParts - A Tool to Aid in Equivalence
Partition Testingtv, in Proc. SoftfairII: Second Conf.
Software Development Tools, Techniques, and Alterna-
tives, 1985.

69

I [TA18 0 3

[TAY 8 6 3

[TSA861

[VIC84]

[VOG8 0 3

[VOG8 5 3

[VOU88]

[WEY80]

[WEY86]

[WEY88a]

[WEY88b]

Tai, K. C., @@Program Testing Complexity and Test
Criteria,@@ IEEE Trans on Software Engineering, Vol. SE-
6, pp 531-538, November 1980.

Taylor, R. N., and Kelly, C. D., @@Structural Testing of
Concurrent Programs@@, in Proc. Workshop on Software
Testing, IEEE Computer Society Press, July 1986.

Tsalalikhin, L., @*Function of One Unit Test Facility1@,
in Proc. Workshop on Boftware Testing, IEEE Computer
Society Press, July 1986.

Vick, C. R., and Ramamoorthy, C. V., Handbook of Soft-
ware Engineering, New York: Van Nostrand Reinhold
Company Inc., 1984.

Voges, Vdo, et a1 , "SADAT-An Automated Testing Tool , I t

IEEE Trans. on Software Engineering, Vol. SE-6, May
1980.

Voges, U. and Taylor, J. R., "Systematic Testing", in
Verification and Validation of Real-Time Software, Ed.
by W. J. Quirk, New York: Springer-Verlag, 1985.

Vouk, Mladen A., McAllister, David F., and Tai, K. C.,
@@An Experimental Evaluation of the Effectiveness of
Random Testing of Fault-Tolerant Softwarel@, in Workshop
on Software Testing Proceedings, IEEE Computer Press,
1986.

Weyuker, E. J. and Ostrand, T. J:, !@Theories of Testing
and the Application of Revealing Subdomainst@, IEEE
Transactions on Software Engineering, Vol. SE-6, May
1980.

Weyuker, E. J., @#Axiomatizing Software Test Data
Adequacy1*, IEEE Transactions on Software Engineering,
Vol. SE-12, No. 12, December 1986.

Weyrich, 0. R.,, Jr., Brown, D. B., and Miller, J. A.,
"The Use of Simulation and Prototypes in Software
Testing8@, in Tools for the Simulation Profession -
Proceedings of the 1988 Conferences, Orlando, Florida,
Society for Computer Simulation.

Weyrich, 0. R., Jr., Cepeda, S. L:, and Brown, D. B.,
@*Glass Box Testing Without Explicit Path Predicate
Formationf1, 26th Ann. Conf. Southeast Regional ACM,
April 20-22, 1988, Mobile, Alabama.

70

[WHI80] White, Lee J. and Cohen, E. I., "A Domain Strategy for
Computer Program Testingt1, IEEE Transactions on Soft-
ware Engineering, Vol. SE-6, May 1980.

[WHI86] White, L. J., and Perera, I. A., "An Alternative
Measure for Error Analysis of the Domain Testing
Strategy", in Proc. Workshop on Software Testing, IEEE
Computer Society Press, July 1986.

[WIL85] Wilson, C. and Osterweil, L. J., ##Omega - A Data Flow
Analysis Tool for the C Programming Language", IEEE
Transactions on Software Engineering, Vol. SE-11, No.
9, September 1985.

[WOO80] Woodward, M. R., et al., !#Experience with Path Analysis
and Testing of Programs", IEEE Transactions on Software
Engineering, Vol. SE-6, May 1980.

[YOU861 Young, M., and Taylor, R. N., I1Combining Static Concur-
rency Analysis with Symbolic Executiont1 in Proc.
Workshop on Software Testing, IEEE Computer Society
Press, July 1986.

71

APPENDIX A

QUEST/Ada IORL System Specification

This appendix contains the IORL specifications for the

QUEST/Ada system. A brief explanation related to the

interpretation of IORL* is in order. IORL specifications are

arranged into sections. The section types used for the QUEST/Ada

system include:

SBD - Schematic Block Diagram,
IORTD - Input Output Relationships and Timing Diagram, and
PPD - Predefined Process Diagram.
The SBDs are purely structural diagrams showing the capacity for

data flow. The links on these diagrams are called interfaces,

which show how data may flow between the various blocks, which

are properly called comDonents. Components have the capacity to

operate concurrently.

Each component has a procedure by which it turns its input

interface data into data to be transmitted over the output

interface. The IORTD is the highest level of control flow for a

component. IORTD-x is the sole high-level procedural diagram for

component x in the SBD. It usually abstracts the many detailed

innerworkings of a component into a few input, process, and

output symbols. These symbols, on the IORTD, are connected by

control flow indicators which show transfer of control, not data

*For details obtain the IORL Reference Manual, Teledyne Brown
Engineering, Inc., 1984.

72

flow (as in the SBD) .
The double-edged rectangle within the IORTD (or PPD) section

indicates the abstraction of more detailed control flow contained

in the appropriately numbered PPD section. Since PPDs may

themselves contain reference to other PPDs, IORL supports

stepwise refinement and top-down design. More importantly, every

effort has been made to organize and group sequences of events

within PPDs such that a complete thought unit is on one page.

Therefore, the IORL specification should be read sequentially

without a great deal of referral between pages. Each page

contains one thought unit which should be mastered before

proceeding to the next page.

The first two diagrams are the SBDs which were included and

discussed in Section 3 . They are repeated here for completeness.

Note that the rrDOCr8 field of the identification fields (bottom of

diagram) shows the first of these to be QUEST-ADA, the same as

the system name for the highest level SBD. The second has

DOC:QA, which indicates that component QA on the previous S B D is

being analyzed into its respective components. In this S B D the

dotted interfaces are external, in this case linking to the user.

Each component in the SBD for D0C:QA is analyzed by an

IORTD. The IORTD numbers correspond to the component number.

Thus, D0C:QA; IORTD-1 is a control flow analysis of the

Parser/Scanner. We have chosen to place the PPD sections behind

the respective calling IORTD/PPD sections. Thus, since IORTD-1

references PPDs 10100 and 10200, they follow immediately. P P D -

73

10200 references PPD-10220 so it is next. PPDs referenced but

not elaborated are either still in design or else they are

considered to be of low enough specification to be programmed.

Ultimately all of the lowest level PPDs will have direct

references to their respective source code files.

Note that IORTD-2 of D0C:QA (the Test Data Generator)

follows the sections for IORTD-1. Its PPDs are numbered in the

20000 series, and the single one elaborated follows. Similarly,

the Test Execution Module (IORTD-3) and the Test Coverage

Analysis (IORTD-4) follow. As additional details of the design

evolve, they will be added in their corresponding positions to

maintain a logical presentation of the system.

74

a

N

I

0
I

I- m
W
3
Q

4

a
a

m
*.'o

E l
C
0 0)
L C

> *
C U I

W O
I-

P O
-a n
- Q Q
*a 3 -0

3 r c \
0'

L W
0 L 3

(uoorcu

c a m

.a .a

n

+ + a

nLn cn

a J o o

c

m
m
>

I

C
3

c

+
.a

In
4 7 3

- 0 n o
.a

L O

> J W
m L +

o o m

a""'

I= a
o!
c3
H
0
a

Y u
0
J m
u
n
l- a
I=
W r u
Lo

-I
W w
W
J

I-
Ln
W
I
c3
W
I
I

4

W
o! a
n

a"

03
03
I

0
0
I
03

d(v

W W ut-

+

.. ..
a a a o

0
m
u
W m

m
..

a
a 0

I
I-
Lo
W
3
00

U W
03 O m

Lo
H

.. ..

..
v) ln
J
U

a

5 %
47
2 5
5 z
- * w
t O
ll - ..
na + a n z

C
0

Q
0
L
0
4.0
c c
H Q
0

C
o c a
*a ul c

o -

.d

e

o n c
C E O
Q J .-I
d r J

m u
u t n u

m x - u w
0 n + c
E U I U l n o o

W I - k

(v m c t
..

c c ~ m
I l l

Q Q Q
a a a

c

3
VI
al u
C
0
.d

C
0

e
0
li
L
0 cc
t
H

t
0

e
0 e
C
0
ul
a
L a
E
0

0

li

.-L

.-L

m

.-L

c

n
n

rn
I

Q

cl

a

tn
W
2
Q

, I/ ,
VI

3
VI
8
o!
UI

VI

rp
C

m
m
rp
L
QI >
0 u
E

L
PI

C
H

w
c

.a

n

a

c

.a

w

a
(v
4

I

0
I

a
a

+r
C
0
Q
al
o!
al
a,
0
L
al

c
Qi u
H
0
Y u
0
-I

u
H
l-
Iz
W
I
U
Ln

J
W
w
W
J

0 z
0 u w
v)

I

(v

W oi

a

a

m

a

2
H

Q l L
L O P)

I-
CY
I-
UY

C w a

J
L ul’o

4
I

0
I I -m m a

W U

a
g a

3 a

Q l m L
L O O

\ E
3 u l l- a c u1
c m n
H Q U I

I

-f
I-I L

mi I D Q 0 0

U I E

00
00

I

0
0
I
00

4 c v

w w
UI-

L O

*

.. ..
a a

4
I
O
I-
E
0
H

u
W
ffl

..

a a 0
u w
0 3
o m m

H

.. ..

..
Ln
ffl a:
-I
u

C
0

(r L

E * .

.a

m o

C
0

Q
E

.a
(r

i m
O L 4 - u
c c
*a u

ul
c

I

U
'0
0
U

Q
'0-
PI3
e-0
t o
U E
E
J C
L O * .a
u l *
C J
H O

PI
+ x
3 0) a
+ L
1 0
04- a

I

I

_.

,

I

-
u
L
J

'D
o
0
0
L

C
0

u1

0 u
0

N
N U
N e
1 9 b
4 L I o
P C a o
al3

a

.a

.a

T
u
u
W

L
+ w m

I n G n Q O
n o L a u 0

L
a, >
L
D
C

E
Ln
Na,
cvc
4 L
I a l

o c
CLU

.a

.a
m

m m

aa,

D u
C
al
E +
J u 1
L a l

e

c w
lo

1 9 c c
.a .a

c\r In
I S I c P I m
4 L - al
I U J C
0 u1D L
n c o m
nn E L

(D
00
I >
0
Z
I
00

W W ul-
L O

44
a a

19 cv cv
19
I
0 a a
u
W
ffl

4

..

a a 0
u w
0 3
offl

ffl
W

.. ..

..
Ln
Ln

J
U

a

Eg
7 7

s:
*. W
Z O
W
I- - -
m a
m z + a

C
0

m
E
L U
0 -
4 J
C ' D

*-) 0
E

'D
m u
L L
J +

.a
+

*r
u +
J J

a

I C J
0 a m
Q Q O I - - Q O E -

u
m
m

-u:

u = m u I

te

+ m
u c

+ U I

0 0
n~

a a 3-i w u m a

a
UI u
UI -0
Q C

a t +
3 0

o w

X
npI

m m
I

U
0
I

4 m

w w
ul-
a 0

+

4

.. ..

a a

(v
I
0
I-
E
0
!-I

u w
Ln

..

a
(30

u w
0 3
OLn m

H

.. ..

..
Ln
Ln

J
u
a

x g
7 5 i z
z $
-. w
E O
W
I- - -
L n Q > a
mIT

n
0
W
I
Ln
H z
H
LL
ob 1.
Y
I-

O
11

I
I - t -
H X
x w

D
u I .f
m a * u

R I -
0
D O

u l c u l
+ o m

m r c w u m I--

I - E L
0 Q O a Q L 0

% B

2 :rn
m n J

aarc +

0 0
.a a o
L O x + a

Y

0
0

I
I-
X w z
--e

m m
I >
0
Z
I m

9 - 4 4
W W ul- a a
n o

lg
lg m
19
c\1
I
I3 a a ..
u w
ln

a
00

u w
0 3 O m m

!-I

.. ..

..
ln
ln
-I u
a

s g
7 7
$i
2 $

*. w
SZO
W
I- *.
ffla

lnT
> a

L
0

m
*
L

o a l
* c

al
Q O ,

L
al
N

* -
Q

Q C
c m
Q

Q U

* 1 0
3 L
Q U * >
3 0
0 0

o n

m

LL a *
C Q

Q
c
3 +
C
E

+
x
Q
C

L
C

rt -
c
a
L

iJ
Q

{

+r
f f lu
a -

a

L
u o o o +
m * m
L L
a l c u
> o c
0 .a a
u + o

8
+ i +
J L L
(L o 0

a

L I -
a
> o LL
o + .
U

C
3 0
d) .a
c *

ID
+ E
J L a 0
+J4-
J C
0 .a

C
0
.a

+ +
.a .a
L Q

C
C O
0 0

0 .a
w b l *
Ln .a c cn u m a
H P I >
IZ’D P) 0

I - +
z+al
O C L f f l

m H P) + mcn L + c
N H L 3 m u 3 bl 0
+ w u + u
I O c
0 l + J +
aLL a 0 . a
a w c n 0 1 :

I-
H
I

I

O.
I w w
3 u

* z 1 I- f

C
0
.a

+ +
.a .a

L Q
C L bl

m m
I

U
0
I

crm

w w ut-

+J

4

.. ..
a a a o

d-
I
0
I- w
0
H

u
LIJ
m

..

a a n

u w
0 2 o m

Ln
H

.. ..

..
m
m
J
u
a

8 %
7 7
i 5
z :
* - w Ea

W c. -.
m n
Lnz
+ a

APPENDIX B

A Rule-Based Software Test Data Generator

The paper given in this appendix was produced in part by

support provided by this project contract. This paper has been

submitted for consideration for publication in IEEE Transactions

on Knowledge and Data Engineering.

A Rule-Based Software T e s t Data Generator

W i l l i a m H . Deason
I n tergr aph

David B . Brown
and

Kai-Hsiung Chang
Auburn U n i v e r s i t y

Address r e s p o n s e to:

D r . David B . Brown
Professor and I n t e r i m Head

Department of Computer Science and Engineering
107 Dunstan Hall

Auburn U n i v e r s i t y , Alabama 36849-5347

November 1 5 , 1988

ABSTRACT

Software reliability is of major concern in science and industry.

Currently, software testing is the only practical means of assuring

reliable software. To avoid the expensive manual tasks involved,

software testing must be further automated to enable larger numbers of

tests to be performed. A key component in an automatic software testing

environment is the test data generator.

Rule-based software test data generation is proposed as an

alternative to either path/predicate analysis or random data generation.

A prototype rule-based test data generator for Ada programs was

constructed and compared with a random test data generator. Four Ada

procedures were used in the comparison. Approximately 2,000 rule-based

test cases and 100,000 randomly-generated test cases were automatically

generated and executed. The success of the two methods was compared

using standard coverage metrics. Simple statistical tests were

performed, which show that even the primitive rule-based test data

generation prototype is significantly better than random data

generat ion.

1

INTRODUCTION

Software reliability is one of the primary concerns of the computer

science community and of scientific, commercial, and military

organizations as well. Software testing is the only feasible means of

assuring acceptable reliability for large software systems. However,

test case development, execution, and evaluation are typically very

time-consuming and labor-intensive tasks. For this reason, continued

research is needed in the area of software testing.

The property of perfect program correctness is difficult (if not

impossible) to define and evaluate. In general, the tester must be

satisfied with examining the results of a finite number of test cases

and concluding that either (1) the reliability of the software is

acceptable or (2) the software contains faults which produce intolerable

errors. In the former case, the software is installed for use, usually

by being integrated into an overall system (with accompanying

integration testing). In the latter case, additional resources must be

applied for debugging and regression testing of the software. The

alternative is either to use unacceptable software or to abandon the

product development. Neither option is very inviting.

Fortunately, there is hope for improving this situation. Much of

the software testing process may be automated. Test execution may be

accomplished by test drivers which are constructed by a software testing

system. Test execution results may be automatically compared to outputs

of a design-specification simulator or a redundant implementation of the

software component. Test s t i adequacy may be monitored as a termination

condition for the testing process. While these capabilities are not

simple to achieve, they are relatively well understood. However,

automated test data generation is not very well understood [MIL84,

2

PAN781.

The approach which typically has been taken is to try to generate

the least number of tests that will guarantee a certain level of test

adequacy. This approach is applicable when test results must be

manually validated against design specifications. However, it cannot

yield acceptably reliable mission-critical software. Orders of

magnitude more tests are required, which are only feasible given the use

of simulation or redundant coding for output verification. In this new

scenario of very large test sets, test data generation techniques are

needed which are able to generate large amounts of effective test data.

One simple approach is to use a random number generator to generate the

data. This is generally considered to be ineffective in that it will

not provide the necessary coverage of the program. This paper

demonstrates that a heuristic rule-based approach to test data

generation can easily produce a large amount of test data which will

provide a much greater degree of coverage than randomly chosen data.

Software testing as a software engineering discipline is coming of

age in the 80's. As E. F. Miller pointed out [MIL84], "there is growing

agreement on the role of testing as a software quality assurance

discipline, as well as on the terminology, technology, and phenomenology

of, and expectation about testing". The first formal conference on

software testing took place at the University of North Carolina in June

1972. Since that time, testing research has continued on several

fronts, including the automation of portions of the testing process.

Software testing, as referenced in this document, is strictly

dynamic testinq, which is the execution of programs with specific input

data and the production and assessment of outputs [WEY861. This type of

3 c /l.

software validation takes place in the programming and maintenance

phases of the software life cycle. It is recognized that testing and

I validation techniques must be employed also during the requirements

definition and design specification phases, as the cost of fixing bugs

is higher the later they are uncovered in the software life cycle

[HOW82]. A -- test case is a formally produced collection of prepared

inputs, predicted outputs, and observed results of one execution of a

program [BEI83]. In standard IEEE terminology, a software fault is an

incorrect program component, while an error is an incorrect output

resulting from a fault.

Oracles are external sources of information used to detect

occurrences of errors. Oracles may be detailed requirement and design

specifications, examples, or simply human knowledge of how a program

should behave. An oracle is capable of determining whether or not a

program has executed correctly on a given test case [HOW86]. Some kind

of oracle is required for dynamic testing of software function, and must

be employed, either by testing personnel or by an automated testing

system, to determine whether outputs are correct. Two automated forms

of oracles already mentioned are design specification simulators and

redundant manual code implementations.

Some type of test adequacy criterion is needed to determine when to

stop testing. Such a criterion is called proqram-based if it is

independent of the specification of the program, and so is based purely

on the code. Statement coveraqe and branch coverage are two program-

based test adequacy criteria [WEY86]. Instrumentation of programs aids

in evaluating how well an adequacy criteria have been met.

Instrumentation is the insertion of additional statements into the

program which, when the program is executed, will compute some dynamic

4

attributes of the program [HUA781. For example, a simple

instrumentation scheme could insert counters to record the number of

times each statement is executed.

-- Test data qeneration has been defined as "specifying and providing

the test input data and of calculating the test output data" [VOG851.

Generating test inputs for a program may not appear to be a difficult

problem since it may be done by a random number generator [DUR811.

However, random testing should not satisfy test adequacy criteria as

well as would selectively chosen test data. On the other hand,

algorithms for generating test data to satisfy particular adequacy

criteria have generally had very bad time and space complexities, thus

producing small amounts of test data. In fact, it is in general not

possible (that is, there exists no algorithm) to generate test data
b

which causes the execution of an arbitrary program path [MIL841. This

is the predicate solution problem, which reduces to the halting problem.

DeMillo, Lipton, and Sayward [DEM78] attempted to develop a practical'

test data generation methodology somewhere between random data

generation and full program predicate solution.

Noting that programmers produce code that is very close to being

correct, they observed the coupling effect property which is the

ability of test cases, designed to detect simple errors, to surface more

subtle errors as well. Howden, on the other hand, developed a set of

functional testing rules [HOW87]. Although both of these research

efforts were directed at helping programmers test their code, they are

also directly applicable to automatic test data generation. Instead of

algorithms they are useful rules of thumb, often called heuristics,

which embody certain bits of "expert knowledge." Thus, a knowledge-

based or expert system approach is very appropriate in attacking the

problem of generating test data for software programs. Such an approach

is made possible not only by the maturing body of knowledge about

software testing, but also by developments in the field of rule-based

systems, a branch of artificial intelligence. Both the coupling effect

and Howden's functional testing rules are very important to the rule

base presented in this paper.

THE TEST DATA GENERATION PROBLEM

Test data generation algorithms are usually designed to generate

test data sets which satisfy some particular test adequacy .criterion,

such as statement coverage. Since algorithms such as these are probably

nonexistent for a general program, the domains of the algorithms are

some subset of all possible programsI e.g., the set of all programs with

only linear path predicates. The applicability of each technique is, of

course, limited by its restricted domain. This limitation is one

problem with conventional test data generation algorithms. A second

problem with such algorithms is that they usually have very bad time and

space complexities. For example, the path-predicate generation/solution

approach for statement coverage must: (1) choose, from the (possibly

infinite) set of possible paths through the program, a subset of these

paths which will provide statement coverage, (2) construct a path

predicate for each chosen path, and then (3) solve the associated path

predicate for each path in terms of the inputs to the program.

The predicate solution problem alone is very complex, and no

algorithm exists for solving general nonlinear predicates IMIL841.

However, there are some good methods which will find solutions to many

predicates. One implementation of the path predicate methodology is

6

Query Utility Environment for Software Testing (QUEST) [BR086, WEY88a,

WEY88bl. QUEST is applicable to a subset of FORTRAN 77 and provides

options to attempt to generate test data to satisfy statement coverage,

decision coverage, condition coverage, or decision/condition coverage.

Of course, there is no guarantee that the predicate solution algorithm

will be able to solve a given predicate; it must halt after a predefined

number of unsuccessful attempts to find a solution and resort to some

alternative such as random test case generator. Even for those

predicates, which can be solved, each solution yields input data for

only one test execution. This is a third problem with traditional test

generation methods: they produce a relatively small number of (possibly

trivial) test cases. The problem, then, is to propose and

evaluate an alternative to either manual or predicate-solution test case

generation methods. Since the manual rules of thumb or heuristic

methods can be put in a rule base, the first step to full automation is

the development and evaluation of such a rule base. The next step is

the development of a parser/scanner mechanism to generate the

information from the code itself to drive the rule base for automatic

test case generation. The proposed paradigm not only draws information

from the code itself, it also uses the results of prior tests. Before

describing this model, it is necessary to have a firm criteria for

developing the rule base. This is described in the next section.

RULE DEVELOPMENT CRITERIA

Before developing a rule base for test data generation, a test

adequacy criterion must be established to provide the goal for rule

development. Several different criteria were evaluated, and a selection

was made based upon the strength of the adequacy criterion. The

7

strength of a criterion generally reflects the number of tests required

to satisfy that criterion. Assuming that the outputs of all test cases

are checked to be sure that they are functionally correct, the

satisfaction of stronger criteria also provide more evidence of the

correctness of the program under test. For these reasons, the strongest

adequacy criteria were chosen to provide the best basis for rule

development: path boundary domain coverage and multiple condition

coverage. The other criteria are significantly weaker than these.

Thus, the rules which were developed attempted to define a procedure by

which the test cases generated would satisfy path boundary domain

coverage and/or multiple condition coverage.

A test data generation rule consists of two parts: the IF part (or

preconditions), and the THEN part (or actions) of the rule. The IF

parts of the rules are typically their physical requirements, reflecting

the fact that a rule could possibly be applied. The THEN parts of the

rules consist of action statements which create test cases for future

execution.

Before the rules can be defined, the relative value or merit of

individual test cases must be understood. The rule-based test data

generator is designed to function in an iterative manner. One iteration

consists of: 1) generating new test cases based on previously executed

test cases, 2) executing the new test cases, and 3) updating the

cumulative execution results. This execution information consists of

the two "best" test cases executed to that point for each condition.

Only these two test cases (i.e., one for the true and one for the false

outcome) are used as a basis for the next iteration of test data

generation rules. If the number of test cases saved from iteration to

iteration was not limited, the search process would be an exhaustive

8

breadth-first search, the number of test cases generated per iteration

would be very large, and the entire process would be rendered

ineffective.

The iterative procedure used the concept of test case "goodness",

which requires more precise definition. A test case T1 will be

considered better than another test case T2, with respect to the

condition C1, if: (1) C1 is a relational expression of the form

LHS <relop> RHS

where <relop> is any relational operator, LHS is the left hand, and RHS

is the right hand side of the relation; and (2) the percent difference

between the values taken on by LHS and RHS during a given test case, T1,

is less than the percent difference between the values of LHS and RHS

during test a succeeding test case, T2. The percent difference

between LHS and RHS is defined as:

A B S (L H S - R H S) / MAX(LHS, R H S)

The terms LHS and RHS in the percent difference formula represent the

values that LHS and RHS take on during a particular test case execution.

The entire test data generation process may be viewed as an attempt

(guided by rules) to minimize the percent difference between the values

of LHS and RHS of each condition in the module under test. This

definition of test case "goodness" holds because it is generally true

that test cases closer to condition boundaries are superior in that they

provide more information about the correctness of the conditions. Also,

in a case where one of the two outcomes of a condition has not been

executed at all, test cases closer to the boundaries are usually more

likely to lead to a test case which crosses the boundary and covers the

opposite outcome.

9

The rationale for rule development given above is proposed merely

1 to provide a starting point for rule development. Recognize that the
I

1 objective here was not to develop the ultimate rule base. Rather it was

to test the concept of rule-based test case generation in order to

validate the design paradigm which will be described below. With these

preliminary definitions in mind, we can now proceed to describe the set

of rules used in the evaluation.

RULES

This section describes a trial set of rules developed to generate

test data. A narrative is given for each rule describing its rationale

and explaining implementational details as necessary. As discussed

earlier, most of these rules are based on the ideas developed by

DeMillo, Lipton, and Sayward [DEM78] and Howden [HOW861, who are

considered to be the experts in heuristically generated software test

data.

In the following discussion, a test case is considered to be a list

of values, (v , v , , v) . Each value corresponds to an input
1 2 n

variable of the procedure to be tested. Since a condition may not

involve all input variables, the best test case for each condition will

generally differ from the others. Suppose a condition, say COND,

involves only the ith variable. Its best test case (v , v , .. ,V ,..,
1 2 i

v) would force the execution of COND while providing the smallest
n

percent difference. If a further improvement is required with respect

to COND, only the value of the ith variable will be modified.

The rule base contains 10 rules. Each rule is capable of

generating multiple test cases. In each iteration, the rules are

scanned one by one. Whenever a rule is applicable (or its IF-part is

10

satisfied), its test case generation action is taken. Most of the time,

l one iteration will "fire" more than one rule, thus generating multiple

test cases for a condition.

Rule 0:

IF: None (always applicable)

THEN: Generate tests with random values for each of the input
pa rame te rs .

Rule 0 provides the starting values for test data generation. When

the automatic test data generator is used to test code, these starting

points will not be random; rather, they will be provided by the designer

or the tester of the program. In fact, an entire suite of predesigned

test cases could be substituted for this rule in order to initiate

testing. However, the existence of such human-provided test cases will

not be assumed. Since this would unfairly bias our evaluation, which

compares the rule-based test cases against random test cases. Rule 0

generates three test cases, with values in the range -l..+l, -100..+100,

and -1000..+1000. A slight variant of this rule could take advantage

of subtype ranges by picking R for a particular subtype based on the

actual range of the subtype. Unlike the rest of the rules, this rule

does not require any previously executed test cases.

RULE 1:

IF: The program contains a condition which contains an input variable
and a constant, and the best test so far for a (True or False) outcome
of the condition gave a percent difference greater than 5%.

THEN: Generate a test case from the previous best test case by putting
the value of the constant in +Lrc position of the input variable
contained in the condition.

According to the criterion given in the previous section, Rule 1 is

designed to test conditional expressions of the form

11

X <relop> K

I where X is an input parameter, K is a constant, and <relop> is any

relational operator.

This rule comes directly from the handling of arithmetic relations in

Howden [HOW86]. However, the reason this rule is applied to more

complex expressions is that it may provide good tests because of the

coupling effect. It may also provide a good approximation which may be

refined to achieve better testing of these expressions.

RULE 2:

IF: The program contains a condition which contains an input variable
and two constants, and the best test so far for a (True or False)
outcome of the condition gave a percent difference greater than 5%.

THEN: Generate three test cases from the previous best test case by
putting the sum, then the differences, of the constants in the position
of the input variable contained in the condition.

Rule 2 is designed to test expressions of the form:

X + K1 <relop> K 2

or

X - K 1 <relop> K 2

where K1 and K2 are constants. Solving each of these equations for X

yields the expressions K 2 - K l and K 1 + K 2 . Therefore, K 1 + K 2 , K l - K 2 , and

K 2 - K l are values used by rule 2.

RULE 3 :

IF: The program contains a condition which contains an input variable
and a constant, and the previous best test for a (True or False) outcome
of the condition gave a percent difference greater than 5%.

THEN: Generate two test cases from the previous best test case by
putting a value slightly greater than the constant, then slightly less
than the constant, in the position of the input parameter contained in
the condition.

Rule 3 is designed to cover conditional expressions of the form

1 2

X <relop> K

where X is an input parameter and K is a constant. While rule 1

generates an "on" point for these types of conditions, rule 3 generates

two "off" points, that is, slightly off the subdomain boundary formed by

the conditional expression. As with rule 1, rule 3 comes directly from

the handling of arithmetic relations [HOW86].

RULE 4 :

IF: The program contains a condition which contains an input variable
and two constants, and the best test so far for a (True or False)
outcome of the condition gave a percent difference greater than 5%.

THEN: Generate three test cases from the previous best test case by
putting the product of the constants, then the ratio of the constants,
in the position of the input variable contained in the condition.

Rule 4 is designed to cover expressions of the form:

X * K1 <relop> K2
or a similar form. It uses Kl*K2, Kl/K2, and K2/K1 in order to cover

these expressions.

RULE 5:

IF: The program contains a condition which contains an input variable
and three constants, and the best test so far for a (True or False)
outcome of the condition gave a percent difference greater than 5%.

THEN: Generate test cases from the previous best test case by putting
the sum of two of the constants divided by the third, then the
difference of two of the constants divided by the third, in the position
of the input parameter contained in the condition.

Rule 5 is designed to test conditions of the form

K1 * X + K2 > K3

or similar forms. All possible combinations of K1, K2, and K3 are used

so that the f;llowing values are computed:

(K1 + K2 / K3
(K1 - K2) / K3
(K2 - K1) / K3

13

(K1 + K3) / K2
(K1 - K3 / K2
(K3 - K1) / K2
(K2 + K3 / K1
(K2 - K3 / K1
(K3 - K2 / K1

I RULE 6: ,

IF: An outcome of a condition has not been executed, there is at least
one previously executed test case, and the procedure contains at least
one constant.

THEN: Generate a test case from the previously executed test case by
replacing an input variable with the constant.

Rule 6 was designed to use program constants to search for test

cases to cover condition outcomes which have not yet been covered at

all. However, Rule 6 proved to be inefficient and so was removed from

the active rule base during the prototype evaluation phase of the

project.

RULE 7:

IF: There is a test case which produces an outcome of a condition.

THEN: Generate test cases by incrementing and decrementing the values of
the previous best test case.

Rule 7 is the first of the purely search-oriented rules. It varies

by a small amount the input variable values in the best test case for an

outcome of a condition. It is primarily intended to improve the

coverage of a condition outcome, although it may in some cases cause the

opposite outcome to be executed. The latter is very desirable when the

opposite outcome has not been covered by any previously executed test

case. This general approach was used quite successfully by Prather

[PRA87].

RULE 8:

IF: There is a test case for an outcome of a condition.

14

THEN: Generate test cases by doubling and halving the values of the
previous best test case.

I Rule 8, like Rule 7, is a purely search-oriented rule. Rather than

changing the values by a small amount, as Rule 7 did, Rule 8 varies the

values by doubling and halving them. While Rule 8 certainly provides

much less precision than Rule 7, it allows much faster movement through

the search space.

RULE 9:

IF: There is a test case for an outcome of a condition.

THEN: Generate test cases by replacing a value in the test case with a
random number.

Rule 9 is a partially random search rule in that it randomly

changes one of the inputs in the test case while holding the other

inputs constant. This rule may cover conditions of the program when the

other rules fail.

PROTOTYPE IMPLEMENTATION

After developing a speculative set of test data generation rules,

it was necessary to implement a prototype test data generator employing

these rules for evaluation purposes. The prototype is applicable to a

subset of VAX Ada.* The Ada subset, as described in the following

section, defines the scope of the prototype. Subsequent sections

discuss the parser requirements, rule interpretation, test execution,

and coverage evaluation portions of the prototype. The reason for

implementing a prototype was to evaluate the ability of a rule-based

test data generator to produce good test cases.

The scope of the prototype implementation was limited in two major

*Ada is a trademark of the United States Government, Ada Joint Programs
office.

15

ways. First, only subprogram input parameters were considered as inputs

to the subprogram under test. That is, no files were generated to test

programs which process files. Second, the type of inputs allowed was

limited to the VAX Ada types INTEGER and FLOAT, defined in the

packageSTANDARD. The INTEGER type was chosen to represent all discrete

types, such as enumerated types, in that these types map to a subset of

the integers. The FLOAT type is representative of real number types.

Thus, the application of rule-based test data generation to these two

data types will demonstrate its applicability to most numeric types, and

will provide some evidence of its applicability to more complex types.

While these limitations must be relaxed when this approach is actually

applied in practice, they are no hindrance to demonstrating the

potential value of rule-based test case generation.

The semantic information required by the expert test data generator

is not nearly as detailed as that required by a compiler. It could

easily be output as a by-product of the compilation of Ada code. The

description of a program to the rule-based test data generator must

contain: 1) the names and types of input parameters, 2) the conditions

of the program, and 3) the variables and constants contained in these

conditions. Since the test data generator expert system prototype is

implemented in Prolog, the information must be provided in the form of

Prolog facts. This is performed by a specialized parser/scanner

developed for this purpose.

RULE INTERPRETER

The computer program which controls the kntire prototype testing

process was written in Prolog. At the highest level, it reads in the

information about a program and repeatedly generates test cases and

16

c a l l s a d r i v e r p rogram t o e x e c u t e t h e s e t e s t cases u n t i l i t h a s d o n e so

t h e number o f t i m e s c h o s e n by t h e human operator of t h e program. Once

t h e Prolog i n t e r p r e t e r i s a c t i v a t e d , i t c o n s u l t s a separate Prolog f i l e

which c o n t a i n s t h e t e s t d a t a g e n e r a t i o n r u l e s . Then i t q u e r i e s t h e

u s e r f o r t h e name of t h e p r o c e d u r e t o be t e s t e d , t h e number of

i t e r a t i o n s , and t h e maximum number of t e s t cases t o b e g e n e r a t e d d u r i n g

a s i n g l e i t e r a t i o n . I t t h e n e v a l u a t e s c lauses t o c o n s t r u c t t h e names of

t h e symbol f i l e , t h e e x e c u t i o n f i l e , and t h e t e s t case f i l e f o r t h e

p r o c e d u r e t o be t e s t e d . The n e x t s t e p c a u s e s a l l a p p l i c a b l e r u l e s t o

f i r e . The t e s t cases g e n e r a t e d are p l a c e d i n t h e t e s t case f i l e , and

c o n t r o l i s p a s s e d t o t h e d r i v e r p rogram of t h e p r o c e d u r e b e i n g t e s t e d .

When c o n t r o l r e t u r n s , t h e e x e c u t i o n r e s u l t s f i l e is c o n s u l t e d and t h e

s u c c e s s o f e a c h t e s t case e x e c u t e d is e v a l u a t e d b a s e d o n t h e e x e c u t i o n

r e s u l t s . The l a s t a c t i o n is t o s u c c e e d (s t o p) i f t h e d e s i r e d i t e r a t i o n s

h a v e b e e n p e r f o r m e d ; o t h e r w i s e t h i s p r o c e d u r e r e c u r s i v e l y c a l l s i t s e l f

t o c o n t i n u e t h e t e s t i n g process.

MODULE DRIVERS AND INSTRUMENTATION

Each i t e r a t i o n o f t h e P r o l o g r u l e i n t e r p r e t e r may g e n e r a t e many

t es t cases. These t es t cases are s tored i n t h e t e s t case f i l e . F o r

t h i s r e a s o n , e a c h p r o c e d u r e b e i n g tes ted mus t have a " d r i v e r " program,

t h a t i s , a p rogram which r e a d s t h e t e s t f i l e , e x e c u t e s t h e p r o c e d u r e ,

and r e c o r d s t h e r e s u l t s o f t h e e x e c u t i o n i n a f i l e . T h i s p r o c e s s is

r e p e a t e d o n c e f o r e v e r y t es t case i n t h e t e s t case f i l e . T h e d r i v e r

p r o d u c e s a n e x e c u t i o n f i l e which is t h e f e e d b a c k i n t o t h e t e s t d a t a

g e n e r a t o r .

The d r i v e r c o n s i s t s o f t w o p a r t s : 1) t h e p r o c e d u r e b e i n g t e s t e d

and 2) t h e i n s t r u m e n t a t i o n p r o c e d u r e s , which m e a s u r e c o v e r a g e . T h e

17

driver algorithm is quite simple, and is (in pseudocode):

repeat for all tests in test case file

initialize coverage matrix

execute procedure under test with test case

output coverage results

The instrumentation procedures are all named CONDITION, which is allowed

by Ada overloading. This fact makes the instrumentation easier than it

otherwise might be. Two different forms of the CONDITION procedure are

used. The simplest is used to instrument conditions which do not

contain a relational operator, such as Boolean function calls. For

instance, suppose there is a function which returns the type BOOLEAN

(true or false) and whose value simply indicates whether or not its one

integer argument is a prime number. A statement such as this might

appear:

if IS-PRIME(1) then...

This statement would be instrumented as follows, assuming that this is

the third condition in the program:

if CONDITION(3,IS - PRIME(1)) then...

The action of this form of CONDITION is simply to note in the coverage

matrix whether condition number three executed true or false (the value

returned by IS - PRIME). Then, CONDITION returns the same BOOLEAN value

that IS - PRIME returned to it, so that the program continues to execute

as it would have without the instrumentation.

The second form of the CONDITION procedure is slightly more

complicated. It is used to instrument conditions of the form

<expression> <relop> <expression>

such as X>2, X*Y<Z, and X**2+Y**2=2**2. This form of the CONDITION

18

procedure takes four arguments: 1) the number of the condition, 2) the

expression to the left of the relational operator, 3) an enumerated-type

value indicating the relational operator, and 4) the expression to the

right of the relational operator. The three previous example

expressions would be instrumented as follows, assuming that they are the

first three conditions in the procedure under test:

CONDITION(l,X,GT,2)

CONDITION(2,X*YILT,Z)

CONDITION(3,X**2+Y**2,EQ,Z**2).

In summary, module drivers and instrumentation were required in

order to evaluate the prototype rule-based test data generator. Their

function was the same as that required for traditional testing methods:

to facilitate test case execution, and to evaluate coverage,

respectively. While the module driver and instrumentation could be

generated by commercial Ada parser/scanners, currently this is not done,

and their proprietary nature makes their augmentation impossible. For

this reason a specialized parser/scanner is being constructed for this

purpose. In addition to its producing the instrumentation/driving

mechanism, t h e p a r s e r / s c a n n e r is also producing information to fire the

rules in the rule-base, as described above.

EVALUATION OF PROTOTYPE

After developing the prototype test data generator, it was

necessary to design a formal procedure for evaluating the prototype.

The test data produced by the prototype was compared, using the test

adequacy criteria described earlier, with randomly generated test data.

Figure 1 shows a data-flow diagram of the rule-based test data

generation system. Briefly, the rule interpreter reads the rule base

19

and symbol files, generates test cases, and writes these to the test

case file. The module driver reads each test case, executes the module

under test, and records the results in both results files. The Prolog-

readable results file is used by the rule interpreter to generate more

test cases, and the entire process continues for a user-selected number

of iterations. At this point, the human-readable results file is

examined to determine the coverage achieved. The coverage metrics

computed are condition coverage, decision coverage, multiple-condition

coverage, and three variants of each of these metrics concerned with

domain boundary coverage.

Table 1 shows some statistics about the four Ada procedures used to

evaluate the test data generator. Although the procedures are small,

each contains fairly complex conditional expressions on its branch

statements, and relatively complicated combinations of branch

statements. Most of the path predicates for each of these procedures

would be very complex and quite difficult for automatic solution using

predicate solution techniques.

The Ada procedure TRIANGLE accepts three inputs, each of the Ada

type FLOAT. It returns a value of type INTEGER indicating which of

several types of triangle is formed by taking the first two arguments as

the two legs of a triangle, and the third argument as the hypotenuse.

The Ada procedure ITRIANGLE accepts three inputs, each of the Ada

type INTEGER. Otherwise, it performs the same function as TRIANGLE,

which receives inputs of type FLOAT. ITRIANGLE returns a value of type

INTEGER indicating which of several types of triangle is formed by

taking the first two arguments as the two legs of a triangle, and the

third argument as the hypotenuse.

20

The Ada procedure CURVE accepts four inputs, each of the Ada type

FLOAT. These four inputs represent the X and Y coordinates of two

points in two-dimensional space. CURVE returns a value of type INTEGER

indicating which of several types of curve best fits these two points.

For example, the test case (1,1,2,2) would represent the points (1,l)

and (2,2), and CURVE would return a value indicating that these points

roughly fit an upwardly-sloping diagonal line.

The Ada procedure LINEAR accepts three inputs, one of the Ada type

FLOAT and two of the Ada type INTEGER. The procedure is called LINEAR

because it is composed of all linear conditional expressions. It

performs no useful function. Table 2 shows a comparison of the coverage

achieved by the prototype test generator and a random test data

generator. Each row of this table represents a single test suite. The

first column of each row indicates the program under consideration. The

size of each test suite is given in the second column. The remaining

columns indicate the number of coverage obtained (e.g., 21 conditions

covered out of 24 possible conditions = 87.5%).

Of the 15 different combinations of five test suites and 3 standard

coverage metrics for TRIANGLE, the prototype-generated test data

obtained better coverage than the random test data nine times, and t h e

random test data obtained better coverage five times. In the remaining

case the coverage was the same. A chi-squared test was performed in

order to test the statistical significance of the number of times the

rule-based data outperformed the random data. The chi-squared value

did not indicate a significant difference. However, if the first test

suite (of only 45 tests) is neglecteti, then the rule-based data performs

21

. -

e
TEST CASE FILE -b MDtk&E +

RULE
INTERPRETER

I PROLOG-READABLE RESULTS~

-b HUMAN-READEAB LE RESULT TEST CASE FILE -b MDtk&E +
RULE

INTERPRETER

-7-T
-b HUMAN-READEAB LE RESULT

Figure 1. Rule Based TCG Paradigm

-22-

T a b l e 1. P r o c e d u r e s Used i n P r o t o t y p e E v a l u a t i o n

I I n p u t s
I C o n d i t i o n s

Dec is i o n s
P a t h s
S u b p r o c e d u r e s

TRIANGLE ITRIANGLE CURVE LINEAR
3 3 4 3

13 1 2 1 6 11
1 0 9 13 8
28 28 9 9
1 0 4 0

T a b l e 2. Comparison of R u l e - b a s e d w i t h

Program Method T e s t s
Used

TRIANGLE
R u l e s

Random

ITRANGLE
R u l e s

Random

4 5
155
308
429
504

4 5
155
308
429
504

49
1 3 9
270
392
4 6 1
5 20

49
1 3 9
270
392
4 6 1
52b

-
f o r t h e F o u r Ada

C o n d i t i o n
Outcomes
C o v e r e d

(of 2 6)
20
2 1
2 5
25
2 5

22
22
22
22
22

(o f 2 4)
21
23
24
24
24
24

2 1
2 1
2 1
2 1
2 1
2 1

P r o g r a m s

Dec is i o n
Outcomes
C o v e r e d

(of 2 0)
1 4
15
1 9
1 9
1 9

1 5
1 5
1 5
15
15

(of 1 8)
15
1 7
18
18
18
1 8

11
1 4
1 4
1 4
1 4
1 4

Random Data

M u l t i p l e - C o n d i t i o n
Outcomes

C o v e r e d

(of 2 6)
1 8
1 9
23
2 3
2 3

20
2 1
2 1
2 1
2 1

(of 2 4)
18
2 1
22
22
22
22

1 9
1 9
1 9
1 9
1 9
1 9

23

for the Four Ada Programs
(continued)

Program Method Tests
Used

CURVE
Rules 42

94
174
188
312

Random

L I NEAR
Rules

Random

42
94

174
188
312

Condition
Outcome s
Covered

(of 32)
24
28
28
28
28

15
15
15
15
15

Decision
Ou t come s
Covered

(of 26)
18
22
22
22
23

12
12
12
12
12

Multiple-Condition
Outcome s
Covered

(of 32)
21
25
25
25
27

12
12
12
12
12

(of 22) (of 16) (of 22)
73 13 8 11

210 18 12 17
321 18 12 17
389 18 12 17
428 18 12 17

73 13
210 13
321 13
389 13
428 13

11
11
11
11
11

better nine of the twelve times and the random data performs better

twice. The chi-squared value for this subset showed a significant

difference with 95% confidence.

In an attempt to further discover differences in performance

characteristics between rule-based and random data, more random tests

were run on TRIANGLE to determine the number of random tests necessary

to obtain the coverage obtained by the rule-based data. The random data

covered 23 conditions after 640 tests, but attained no further coverage,

24

even though 40,000 tests were run. This left the random data coverage

still two conditions short of the coverage provided by the rule-based

data.
I

A comparison of the coverage of ITRIANGLE achieved by the prototype

test generator and a random test data generator for ITRIANGLE is shown

next in Table 2. Of the 18 different combinations of six test suites

and 3 coverage metrics, the prototype-generated test data obtained

better coverage than the random test data 16 times, and the random test

data obtained better coverage one time. In the remaining case the

coverage was the same. This is obviously a highly significant

difference (alpha < 0.005). As with the TRIANGLE procedure, additional

random tests were performed. The random test data covered one more

condition at test case 2216, and another at 7170, for a total of 23

conditions covered. This is still one condition short of the 24

condition outcomes covered by the rule-based data. A total of 20,000

random tests were performed for the procedure ITRIANGLE.

An interesting feature of the test data generation for the

procedure CURVE is that the randomly generated data never improved over

the initial random data. Even more importantly, the rule-generated test

data obtained better values for all coverage metrics and for all test

set sizes than the randomly-generated test data. Even at only 42

tests, condition coverage for the rule-based data was 60% better than

the random, decision coverage was 50% better than random, and multiple-

condition coverage was 75% better. When additional random tests were

run for CURVE, three more condition outcomes were covered with 730 test

cases, then two more with 1662 test cases, then one more with 1682 test

cases. No more were covered up to 20,000 test cases. Cumulatively, 21

25

conditions were covered, which is seven short of the 28 conditions

covered by the rule-based data.

Finally, a comparison of the coverage of LINEAR showed that in only

one of the 15 standard coverage cases did the randomly generated data

perform better than the rule-generated data. Only two cases was their

performance the same. Chi-squared tests again showed a very

significant difference (alpha < 0.005).

Additional random tests for LINEAR resulted in one condition

outcome being added to the coverage for each of test case numbers 596,

1098, 1304, and 1778. The total conditions covered up to 20,000 test

cases was 17, which is still one short of the 18 covered by the rule-

based data.

DISCUSS ION

While the primary objective of this work was to test the concept of

rule-based test data generation, it also surfaced considerable knowledge

on ways in which the rules can be further improved. For example, rules

can be generated to simplify the expressions appearing in the condi-

tions. Consider a condition, COND, is having the format of: <expl>

<rel> <exp2>. By using the following simplification rules, the

condition boundary of COND can be identified easier, and less test data

needs to be

Rule A

If
then

Rule B

If
then

These

generated to obtain the equivalent coverage:

<expl> does not contain variables
exchange positions of <expl> and <exp2>

<expl> contains constants
move all possible constants to <exp2>

rules would simplify <expl> such that it contains at least

26

one variable and no constants. For example given a condition

3 =< 5 * x + 4

<expl>: 3
<exp2>: 5 * X + 4
<rel> : =<

By applying Rule A, it becomes

5 * x + 4 >= 3

By applying Rule B, it becomes

x >= -0.2

From this, three test cases can be generated for X. They are X =

-0.2 + e, X = -0.2, and X = -0.2 - e, where e is a relatively small

number. Comparing with Rule 5 mentioned earlier, the original 9 test

cases are reduced to 3 test cases with this simplification.

The following forms of expression are subject to Rules A and B:

Example

1. constant.
2. single variable.
3. single variable + (- 1 constant.
4 - single variable * (/ I constant.
5. two variables (+,-).
6. two variables (*,/I.
7 . two variables + (- 1 constant.
8 . two variables * (/) constant.

<exp> = 10
<exp> = x
<exp> = x + (-) 5
<exp> = x * (/ I 5
<exp> = x + (-) y
<exp> = x * (/ I y
<exp> = x +(-I y +(-I 5
<exp> = (x+(-Iy)/5,

or (x+(-)y)*5

Although there are 6 4 combinations between <expl> and <exp2>, after

simple simplification steps the combinations can be generalized into the

following 10 cases.

<expl> <exp2>

1. X
2. X
3. X
4 . X
5. X
6. X
7 . c 1 * x + c2 * Y
8. c 1 * x + c2 * Y
9. X * Y

c1
Y

Y + c1
Y * C1 (or Y / C1)

c 1 * x + c 2 * y + c 3
c 1 * x * Y + c2
c3 * x + c4 * Y + c5
c3 * x * Y + c4

c1

27

10. X c 1 * Y / x + c2

As a further example, consider the sixth relationship given above.

Since the goal of test case generation is to assure the generated test

data will have small percent difference and cover both sides of the

condition boundary, the place where a particular test case locates on

the boundary is not critical. Thus we can determine Y as follows:

If there is a best test case for this condition
then assign Y = the value of Y in the best test case
else assign Y = (upper-bound - lower-bound) of Y/2
The test case value of X can then be determined by the following

simplification steps.

<expl> <exp2>

X c 1 * Y * x + c2

Since the value of Y is now known, the relationship becomes

<expl>

X

<exp2>

c3 * x + c2
By recursively applying Rule A and Rule B, we obtain the following:

<expl> <exp2>

X c3 * x + c2

(1-C3) * X c2

X c4

From this relationship, the test case data is defined as:

test data: 1. X = C4 + e I Y
2. x = c4 I Y
3. X = C 4 - e I Y

By using this type of simplification heuristics, more efficient

test cases can be generated, i.e,>, F=wcr cases which cover more

branches. It is expected that experience in exercising the rule base

will lead to the generation of many other rules which will be subjected

28

to comparative evaluation as the system is developed.

CONCLUSIONS

The main goal of this paper was to demonstrate the feasibility of a

rule-based software test data generator. Such a test data generator

would be used in conjunction with a software testing environment. The

most important phases of the project were: 1) the development of a

simple trial rule base, 2) the implementation of the prototype test data

generator, and 3) the evaluation of the prototype. Ten test data

generation rules were developed during the initial phase. During the

second phase, these rules, along with a rule interpreter, were

implemented in Prolog. Also, four Ada modules were selected and

instrumented as test modules, and drivers were implemented for these

modules. During the evaluation phase, approximately 2,000 rule-

generated tests and 102,000 randomly-generated tests were executed in

all. These two sets of data were compared using simple statistical

tests. These tests clearly show that the rule-base-generated data is

significantly better than the randomly-generated data. In fact, the

same coverage could not be attained by random test-case generation even

when very large numbers of randomly-generated test cases were tried.

This result demonstrates that rule-based test data generation is

feasible, and shows great promise in assisting test engineers,

especially when the rule base is developed further.

While the above results were impressive, they are not presented to

demonstrate the immediate applicability of this rule base or even this

paradigm. The rule base needs considerable development, ar.d ;C, is

expected to evolve into a system of hundreds of rules. Similarly, the

parser/scanner and test case execution interfaces with the test data

29

generator require considerable development before the paradigm can be

fully implemented. However, these can now proceed recognizing the

potential that exists as demonstrated by the experiments documented

above.

30

REFERENCES

[AH0851 Aho, A. V., Sethi, R. and Ullman, J. D., Compilers,
Principles, Techniques, and Tools[, Reading, Massachusetts:
Addison-Wesley Publishing Company, 1986.

[BE1831 Beizer, B., Software Testing Techniques1 , New York: Van

[BR086] Brown, D. B., "Test Case Generator for TIR Programs", Contract

Nostrand Reinhold Company, 1983.

Number DAAH01-84-D-A030 Final Report[, September 30, 1986.

[DEM78] DeMillo, R. A. , Lipton, R. J., and Sayward, F. G., "Hints on
Test Data Selection: Help for the Practicing Programmer",
IEEE Computerl, Vol. 11, No. 4, April 1978.

[DUR80] Duran, J. W. and Wiorkowski, J. J., "Quantifying Software
Validity by Sampling", IEEE Trans. Reliability[, Vol. R-29,
No. 2, June 1980.

[DUR81] Duran, J. W. and Ntafos, S., "A Report on Random Testing", in
Proc. of 5th International Conference on Software
Engineering], Mar 9-12, 1981.

[FA1851 Fairley, R. E., Software Engineering Concepts1 , McGraw-
Hill, New York, 1985.

[GO0751 Goodenough, J. B. and Gerhart, S. L., "Toward a Theory of Test
Data Selection", IEEE Trans. Software Engineeringl, Vol. SE-1,
No. 2, June 1975.

[HOW821 Howden, W. E., "Life-Cycle Software Validation", IEEE
Computer(, Vol. 15, No. 2, February 1982.

[HOW861 Howden, W. E., "A Functional Approach to Program Testing and
Analysis", IEEE Trans. Software Engineeringl, Vol. SE-12, No.
10, October 1986.

[HOW871 Howden, W. E., Functional Program Testing and Analysis1 ,
McGraw-Hill, New York, 1987.

[HUA78] Huang, J. C., "Program Instrumentation and Software Testing",
IEEE Computer(, Vol. 11, No. 4, April 1978.

[MIL841 Miller, E. F., "Software Testing Technology: An Overview", in
Handbook of Software Engineering(, New York: Van Nostrand
Reinhold Company, 1984.

[NTA88] Ntafos, S. C., "A Comparison of Some Structural Testing
Strategies", IEEE Trans. Software Zugineering I , Vol. 14, No.
6, June 1988.

[PAN781 Panzl, D. J., "Automatic Software Test Drivers", IEEE
Computerl, Vol. 11, No. 4, April 1978.

31

[PRA871

I [RAP851

[ROS85Al

[ROS85Bl

[VOG8 5 I

[WEY88al

[WEY88bl

[WEY861

[WIL851

Prather, R. E. and Myers, P., Jr., "The Path Prefix Software
Testing Strategy", IEEE Trans. Software Engineering, Vol. SE-

Rapps, S. and Weyuker, E. J., "Selecting Software Test Data
Using Data Flow Information", IEEE Trans. Software
Engineering[, Vol. SE-11, No. 4 , April 1985.

Ross, S. M., "Statistical Estimation of Software Reliability",
IEEE Trans. Software Engineering[, Vol. SE-1, No. 5, May 1985.

Ross, S. M., "Software Reliability: The Stopping Rule
Problem", IEEE Trans. Software Engineering[, Vol. SE-11, No.
12, Dec. 1985.

Voges, U. and Taylor, J. R., "Systematic Testing'', in
Verification and Validation of Real-Time Software], Ed. by
W. J. Quirk, New York: Springer-Verlag, 1985.

13, NO. 7, July 1987.

Weyrich, 0. R., Jr., Brown, D. B., and Miller, J. A., "The Use
of Simulation and Prototypes in Software Testing", in Tools
for the Simulation Profession - Proceedings of the 1988
Conferencesl, Orlando, Florida, Society for Computer
Simulation.

Weyrich, 0. R., Jr., Cepeda, S. L., and Brown, D. B. , "Glass
Box Testing Without Explicit Path Predicate Formation", 26th
Ann. Conf. Southeast Regional ACM, Apr 20-22, 1988, Mobile,
Alabama.

Weyuker, E. J.,"Axiomatizing Software Test Data Adequacy",
IEEE Trans. Software Engineering[, Vol. SE-12, No. 12, Dec.
1986.

Wilson, C. and Osterweil, L. J., "Omega - A Data Flow Analysis
Tool for the C Programming Language", IEEE Trans. Software
Engineering[, Vol. SE-11, No. 9, Sept. 1985.

32

FOOTNOTES

W. H. Deason is with Intergraph in Huntsville, Alabama.

D. B. Brown and K. H. Chang are with the Department of Computer

Science and Engineering at Auburn University.

This work was partially supported by a contract with NASA, Mar-

shall Space Flight Center, Huntsville, Alabama.

INDEX TERMS

Software testing, test data generation, rule-based systems, Ada

testing, unit level testing, test coverage

FIGURE CAPTIONS

F i g . 1 R u l e B a s e d T e s t C a s e G e n e r a t o r Paradigm

